Wang Deng, Wang Ying, Yang Jing, He Xiu, Wang Rui-Jie, Lu Zhi-Song, Qiao Yan
School of Materials and Energy, Southwest University, Chongqing 400715, China.
Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Southwest University, Chongqing 400715, China.
Polymers (Basel). 2020 Mar 17;12(3):664. doi: 10.3390/polym12030664.
The flavin-based indirect electron transfer process between electroactive bacteria and solid electrode is crucial for microbial fuel cells (MFCs). Here, a cellulose-NaOH-urea mixture aerogel derived hierarchical porous carbon (CPC) is developed to promote the flavin based interfacial electron transfer. The porous structure of the CPC can be tailored via adjusting the ratio of urea in the cellulose aerogel precursor to obtain CPCs with different type of dominant pores. According to the electrocatalytic performance of different CPC electrodes, the CPCs with higher meso- and macropore area exhibit greatly improved flavin redox reaction. While, the CPC-9 with appropriate porous structure achieves highest power density in CN32 MFC due to larger active surface for flavin mediated interfacial electron transfer and higher biofilm loading. Considering that the CPC is just obtained from the pyrolysis of the cellulose-NaOH-urea aerogel, this work also provides a facile approach for porous carbon preparation.
基于黄素的电活性细菌与固体电极之间的间接电子转移过程对于微生物燃料电池(MFC)至关重要。在此,开发了一种由纤维素-氢氧化钠-尿素混合物气凝胶衍生的分级多孔碳(CPC),以促进基于黄素的界面电子转移。通过调节纤维素气凝胶前驱体中尿素的比例,可以定制CPC的多孔结构,从而获得具有不同类型主导孔的CPC。根据不同CPC电极的电催化性能,中孔和大孔面积较高的CPC表现出显著改善的黄素氧化还原反应。同时,具有适当多孔结构的CPC-9在CN32 MFC中实现了最高功率密度,这归因于黄素介导的界面电子转移具有更大的活性表面和更高的生物膜负载量。鉴于CPC仅通过纤维素-氢氧化钠-尿素气凝胶的热解获得,这项工作还为多孔碳的制备提供了一种简便方法。