Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
J Am Coll Cardiol. 2020 Mar 24;75(11):1281-1295. doi: 10.1016/j.jacc.2019.12.069.
Better risk stratification strategies are needed to enhance clinical care and trial design in heart failure with preserved ejection fraction (HFpEF).
The purpose of this study was to assess the value of a targeted plasma multi-marker approach to enhance our phenotypic characterization and risk prediction in HFpEF.
In this study, the authors measured 49 plasma biomarkers from TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist) trial participants (n = 379) using a Multiplex assay. The relationship between biomarkers and the risk of all-cause death or heart failure-related hospital admission (DHFA) was assessed. A tree-based pipeline optimizer platform was used to generate a multimarker predictive model for DHFA. We validated the model in an independent cohort of HFpEF patients enrolled in the PHFS (Penn Heart Failure Study) (n = 156).
Two large, tightly related dominant biomarker clusters were found, which included biomarkers of fibrosis/tissue remodeling, inflammation, renal injury/dysfunction, and liver fibrosis. Other clusters were composed of neurohormonal regulators of mineral metabolism, intermediary metabolism, and biomarkers of myocardial injury. Multiple biomarkers predicted incident DHFA, including 2 biomarkers related to mineral metabolism/calcification (fibroblast growth factor-23 and OPG [osteoprotegerin]), 3 inflammatory biomarkers (tumor necrosis factor-alpha, sTNFRI [soluble tumor necrosis factor-receptor I], and interleukin-6), YKL-40 (related to liver injury and inflammation), 2 biomarkers related to intermediary metabolism and adipocyte biology (fatty acid binding protein-4 and growth differentiation factor-15), angiopoietin-2 (related to angiogenesis), matrix metalloproteinase-7 (related to extracellular matrix turnover), ST-2, and N-terminal pro-B-type natriuretic peptide. A machine-learning-derived model using a combination of biomarkers was strongly predictive of the risk of DHFA (standardized hazard ratio: 2.85; 95% confidence interval: 2.03 to 4.02; p < 0.0001) and markedly improved the risk prediction when added to the MAGGIC (Meta-Analysis Global Group in Chronic Heart Failure Risk Score) risk score. In an independent cohort (PHFS), the model strongly predicted the risk of DHFA (standardized hazard ratio: 2.74; 95% confidence interval: 1.93 to 3.90; p < 0.0001), which was also independent of the MAGGIC risk score.
Various novel circulating biomarkers in key pathophysiological domains are predictive of outcomes in HFpEF, and a multimarker approach coupled with machine-learning represents a promising strategy for enhancing risk stratification in HFpEF.
需要更好的风险分层策略来加强心力衰竭伴射血分数保留(HFpEF)的临床护理和试验设计。
本研究旨在评估靶向血浆多标志物方法在增强 HFpEF 表型特征和风险预测方面的价值。
本研究中,作者使用多重分析测定了来自 TOPCAT(醛固酮拮抗剂治疗保留心脏功能心力衰竭)试验参与者(n=379)的 49 种血浆生物标志物。评估了生物标志物与全因死亡或心力衰竭相关住院(DHFA)风险之间的关系。使用基于树的流水线优化平台为 DHFA 生成多标志物预测模型。我们在 HFpEF 患者的独立队列中验证了该模型,该队列来自 PHFS(宾州心力衰竭研究)(n=156)。
发现了两个大的、紧密相关的主导生物标志物簇,包括纤维化/组织重塑、炎症、肾损伤/功能障碍和肝纤维化的生物标志物。其他簇由神经激素调节的矿物质代谢、中间代谢和心肌损伤的生物标志物组成。多种生物标志物预测了 DHFA 的发生,包括与矿物质代谢/钙化相关的 2 种生物标志物(成纤维细胞生长因子-23 和 OPG[骨保护素])、3 种炎症生物标志物(肿瘤坏死因子-α、sTNFRI[可溶性肿瘤坏死因子受体 I]和白细胞介素-6)、YKL-40(与肝损伤和炎症有关)、与中间代谢和脂肪细胞生物学相关的 2 种生物标志物(脂肪酸结合蛋白-4 和生长分化因子-15)、血管生成素-2(与血管生成有关)、基质金属蛋白酶-7(与细胞外基质周转有关)、ST-2 和 N 末端 pro-B 型利钠肽。使用生物标志物组合的机器学习衍生模型强烈预测了 DHFA 的风险(标准化风险比:2.85;95%置信区间:2.03 至 4.02;p<0.0001),并在添加到 MAGGIC(慢性心力衰竭风险评分全球分析组)风险评分后显著改善了风险预测。在一个独立的队列(PHFS)中,该模型强烈预测了 DHFA 的风险(标准化风险比:2.74;95%置信区间:1.93 至 3.90;p<0.0001),这也独立于 MAGGIC 风险评分。
关键病理生理领域的各种新型循环生物标志物可预测 HFpEF 的结局,多标志物方法与机器学习相结合代表了增强 HFpEF 风险分层的有前途的策略。