Suppr超能文献

放射组学和深度学习:肝脏应用。

Radiomics and Deep Learning: Hepatic Applications.

机构信息

Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

Health Innovation Big Data Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.

出版信息

Korean J Radiol. 2020 Apr;21(4):387-401. doi: 10.3348/kjr.2019.0752.

Abstract

Radiomics and deep learning have recently gained attention in the imaging assessment of various liver diseases. Recent research has demonstrated the potential utility of radiomics and deep learning in staging liver fibroses, detecting portal hypertension, characterizing focal hepatic lesions, prognosticating malignant hepatic tumors, and segmenting the liver and liver tumors. In this review, we outline the basic technical aspects of radiomics and deep learning and summarize recent investigations of the application of these techniques in liver disease.

摘要

近年来,影像组学和深度学习在各种肝脏疾病的影像学评估中受到关注。最近的研究表明,影像组学和深度学习在肝纤维化分期、门脉高压检测、局灶性肝脏病变特征分析、恶性肝脏肿瘤预后以及肝脏和肝脏肿瘤分割方面具有潜在的应用价值。在这篇综述中,我们概述了影像组学和深度学习的基本技术方面,并总结了这些技术在肝脏疾病中的应用的最新研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a4e/7082656/c749c9957e11/kjr-21-387-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验