Suppr超能文献

使用基于相机的系统进行超声可切换荧光成像。

ultrasound-switchable fluorescence imaging using a camera-based system.

作者信息

Yu Shuai, Yao Tingfeng, Liu Yang, Yuan Baohong

机构信息

Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, USA.

Joint Biomedical Engineering Program, The University of Texas at Arlington and The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Biomed Opt Express. 2020 Feb 20;11(3):1517-1538. doi: 10.1364/BOE.385996. eCollection 2020 Mar 1.

Abstract

Ultrasound-switchable fluorescence (USF) is a novel imaging technique that provides high spatial resolution fluorescence images in centimeter-deep biological tissue. Recently, we successfully demonstrated the feasibility of USF imaging using a frequency-domain photomultiplier tube-based system. In this work, for the first time we carried out USF imaging via a camera-based USF imaging system. The system acquires a USF signal on a two-dimensional (2D) plane, which facilitates the image acquisition because the USF scanning area can be planned based on the 2D image and provides high USF photon collection efficiency. We demonstrated USF imaging in the mouse's glioblastoma tumor with multiple targets via local injection. In addition, we designed the USF contrast agents with different particle sizes (70 nm and 330 nm) so that they could bio-distribute to various organs (spleen, liver, and kidney) via intravenous (IV) injections. The results showed that the contrast agents retained stable USF properties in tumors and some organs (spleen and liver). We successfully achieved USF imaging of the mouse's spleen and liver via IV injections. The USF imaging results were compared with the images acquired from a commercial X-ray micro computed tomography (micro-CT) system.

摘要

超声可切换荧光(USF)是一种新型成像技术,可在厘米深度的生物组织中提供高空间分辨率的荧光图像。最近,我们成功证明了使用基于频域光电倍增管的系统进行USF成像的可行性。在这项工作中,我们首次通过基于相机的USF成像系统进行了USF成像。该系统在二维(2D)平面上采集USF信号,这有助于图像采集,因为可以基于2D图像规划USF扫描区域,并提供高USF光子收集效率。我们通过局部注射在具有多个靶点的小鼠胶质母细胞瘤肿瘤中展示了USF成像。此外,我们设计了不同粒径(70 nm和330 nm)的USF造影剂,以便它们可以通过静脉注射(IV)在体内分布到各个器官(脾脏、肝脏和肾脏)。结果表明,造影剂在肿瘤和一些器官(脾脏和肝脏)中保留了稳定的USF特性。我们通过静脉注射成功实现了小鼠脾脏和肝脏的USF成像。将USF成像结果与从商用X射线微型计算机断层扫描(micro-CT)系统获取的图像进行了比较。

相似文献

1
ultrasound-switchable fluorescence imaging using a camera-based system.
Biomed Opt Express. 2020 Feb 20;11(3):1517-1538. doi: 10.1364/BOE.385996. eCollection 2020 Mar 1.
2
An ICCD camera-based time-domain ultrasound-switchable fluorescence imaging system.
Sci Rep. 2019 Jul 22;9(1):10552. doi: 10.1038/s41598-019-47156-x.
3
In vivo ultrasound-switchable fluorescence imaging.
Sci Rep. 2019 Jul 8;9(1):9855. doi: 10.1038/s41598-019-46298-2.
5
tumor ultrasound-switchable fluorescence imaging via intravenous injections of size-controlled thermosensitive nanoparticles.
Nano Res. 2023 Jan;16(1):1009-1020. doi: 10.1007/s12274-022-4846-9. Epub 2022 Sep 21.
8
Improving the spatial resolution and signal-to-noise ratio of ultrasound switchable fluorescence imaging.
J Biophotonics. 2024 May;17(5):e202300533. doi: 10.1002/jbio.202300533. Epub 2024 Mar 2.
9
A Biocompatible and Near-Infrared Liposome for In Vivo Ultrasound-Switchable Fluorescence Imaging.
Adv Healthc Mater. 2020 Feb;9(4):e1901457. doi: 10.1002/adhm.201901457. Epub 2020 Jan 20.
10
Noninvasive measurement of local temperature using ultrasound-switchable fluorescence.
Biomed Opt Express. 2023 Aug 2;14(9):4406-4420. doi: 10.1364/BOE.497815. eCollection 2023 Sep 1.

引用本文的文献

1
Improving the spatial resolution and signal-to-noise ratio of ultrasound switchable fluorescence imaging.
J Biophotonics. 2024 May;17(5):e202300533. doi: 10.1002/jbio.202300533. Epub 2024 Mar 2.
2
tumor ultrasound-switchable fluorescence imaging via intravenous injections of size-controlled thermosensitive nanoparticles.
Nano Res. 2023 Jan;16(1):1009-1020. doi: 10.1007/s12274-022-4846-9. Epub 2022 Sep 21.
4
Recent advances in ultrasound-controlled fluorescence technology for deep tissue optical imaging.
J Pharm Anal. 2022 Aug;12(4):530-540. doi: 10.1016/j.jpha.2021.10.002. Epub 2021 Oct 11.
6
Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials.
Polymers (Basel). 2022 Mar 17;14(6):1221. doi: 10.3390/polym14061221.
7
Ultrasound-Responsive Systems as Components for Smart Materials.
Chem Rev. 2022 Mar 9;122(5):5165-5208. doi: 10.1021/acs.chemrev.1c00622. Epub 2021 Nov 12.
8
Near-infrared temperature-switchable fluorescence nanoparticles.
Quant Imaging Med Surg. 2021 Mar;11(3):1010-1022. doi: 10.21037/qims-20-797.

本文引用的文献

1
An ICCD camera-based time-domain ultrasound-switchable fluorescence imaging system.
Sci Rep. 2019 Jul 22;9(1):10552. doi: 10.1038/s41598-019-47156-x.
2
In vivo ultrasound-switchable fluorescence imaging.
Sci Rep. 2019 Jul 8;9(1):9855. doi: 10.1038/s41598-019-46298-2.
3
Modulation of ultrasound-switchable fluorescence for improving signal-to-noise ratio.
J Biomed Opt. 2017 Jul 1;22(7):76021. doi: 10.1117/1.JBO.22.7.076021.
4
Advanced optoacoustic methods for multiscale imaging of in vivo dynamics.
Chem Soc Rev. 2017 Apr 18;46(8):2158-2198. doi: 10.1039/c6cs00765a.
5
The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe.
Int J Mol Sci. 2017 Feb 11;18(2):384. doi: 10.3390/ijms18020384.
9
A practical guide to photoacoustic tomography in the life sciences.
Nat Methods. 2016 Jul 28;13(8):627-38. doi: 10.1038/nmeth.3925.
10
Development of Ultrasound-switchable Fluorescence Imaging Contrast Agents based on Thermosensitive Polymers and Nanoparticles.
IEEE J Sel Top Quantum Electron. 2014 May-Jun;20(3). doi: 10.1109/JSTQE.2013.2280997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验