Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
J Magn Reson Imaging. 2020 Nov;52(5):1462-1474. doi: 10.1002/jmri.27146. Epub 2020 Mar 24.
Bone-cartilage interactions have been implicated in causing osteoarthritis (OA).
To use [ F]-NaF PET-MRI to 1) develop automatic image processing code in MatLab to create a model of bone-cartilage interactions and 2) find associations of bone-cartilage interactions with known manifestations of OA.
Prospective study aimed to evaluate a data analysis method.
Twenty-nine patients with knee pain or joint stiffness.
FIELD STRENGTH/SEQUENCE: 3T MRI (GE), 3D CUBE FSE, 3D combined T ρ/T MAPSS, [18F]-sodium fluoride, SIGNA TOF (OSEM).
Correlation between MRI (cartilage) and PET (bone) quantitative parameters, bone-cartilage interactions model described by modes of variation as derived by principal component analysis (PCA), WORMS scoring on cartilage lesions, bone marrow abnormalities, subchondral cysts.
Linear regression, Pearson correlation.
Mode 1 was a positive predictor of the bone abnormality score (P = 0.0003, P = 0.001, P = 0.0007) and the cartilage lesion score (P = 0.03, P = 0.01, P = 0.02) in the femur, tibia, and patella, respectively. For the cartilage lesion scores, mode 5 was the most important positive predictor in the femur (P = 3.9E-06), and mode 2 were predictors, significant negative predictor in the tibia (P = 0.007). In the patella, mode 1 was a significant positive predictor of the bone abnormality score (P = 0.0007).
By successfully building an automatic code to create a bone-cartilage interface, we were able to observe dynamic relationships between biochemical changes in the cartilage accompanied with bone remodeling, extended to the whole knee joint instead of simple colocalized observations, shedding light on the interactions that occur between bone and cartilage in OA. Evidence Level: 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;52:1462-1474.
骨软骨相互作用被认为与骨关节炎(OA)的发生有关。
使用[F]-NaF PET-MRI 来:1)在 MatLab 中开发自动图像处理代码,以创建骨软骨相互作用模型,2)发现骨软骨相互作用与已知 OA 表现之间的关联。
旨在评估数据分析方法的前瞻性研究。
29 名膝关节疼痛或关节僵硬的患者。
场强/序列:3T MRI(GE),3D CUBE FSE,3D 联合 Tρ/T MAPSS,[18F]-氟化钠,SIGNA TOF(OSEM)。
MRI(软骨)和 PET(骨)定量参数之间的相关性,由主成分分析(PCA)得出的模式变化描述的骨软骨相互作用模型,软骨病变、骨髓异常、软骨下囊肿的 WORMS 评分。
线性回归,Pearson 相关。
模式 1 是股骨、胫骨和髌骨的骨异常评分(P=0.0003,P=0.001,P=0.0007)和软骨病变评分(P=0.03,P=0.01,P=0.02)的正预测因子。对于软骨病变评分,模式 5 是股骨中最重要的正预测因子(P=3.9E-06),模式 2 是预测因子,胫骨中显著的负预测因子(P=0.007)。在髌骨中,模式 1 是骨异常评分的显著正预测因子(P=0.0007)。
通过成功构建自动代码来创建骨软骨界面,我们能够观察到软骨生化变化与骨重塑之间的动态关系,扩展到整个膝关节,而不仅仅是简单的共定位观察,这为 OA 中发生的骨与软骨之间的相互作用提供了启示。
3 级技术功效:3 级 J. Magn. Reson. Imaging 2020;52:1462-1474.