Suppr超能文献

弹性蛋白样多肽链的原位相转变调节基于弹性蛋白的水凝胶的热响应性能。

In Situ Phase Transition of Elastin-Like Polypeptide Chains Regulates Thermoresponsive Properties of Elastomeric Protein-Based Hydrogels.

机构信息

Department of Chemistry University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.

出版信息

Biomacromolecules. 2020 Jun 8;21(6):2258-2267. doi: 10.1021/acs.biomac.0c00206. Epub 2020 Apr 3.

Abstract

Engineering protein-based hydrogels that can change their physical and mechanical properties in response to environmental stimuli have attracted considerable interest due to their promising applications in biomedical engineering. Among environmental stimuli, temperature is of particular interest. Most thermally responsive protein hydrogels are constructed from thermally responsive elastin-like polypeptides (ELPs), which exhibit a lower critical solution temperature (LCST) transition, or nonstructured elastomeric proteins fused with ELPs. Here we report the engineering of thermally responsive elastomeric protein-based hydrogels by fusing ELPs to elastomeric proteins made of tandemly arranged folded globular proteins. By fusing ELP sequence (VPGVG) to an elastomeric protein (GR), which is made of small globular protein GB1 (G) and random coil sequence resilin (R), we engineered a series of protein block copolymers, V-(GR). The fusion proteins V-(GR) exhibit temperature-responsive behaviors in aqueous solution that are different from that of V-ELPs, as they did not exhibit the macroscopic phase transitions in the turbidity test. Instead, V48-(GR) and V72-(GR) form micelles at temperatures higher than the transition temperature of V48 and V72 at the same concentration. Using the well-developed ruthenium-mediated photochemical cross-linking method, V-(GR) polymers can be cross-linked into hydrogels, in which V-ELP serve as side chains of the hydrogel network. These hydrogels exhibited thermoresponsive properties due to the temperature dependent phase transition behaviors of the incorporated V-ELPs blocks. At elevated temperatures, the V-ELPs side chains in the hydrogel network underwent aggregation, leading to secondary physical cross-linking. The aggregation of the V-ELPs resulted in higher Young's modulus and reduced swelling ratio. Furthermore, the amplitude of such property changes can be tuned by side chain length and composition. These results demonstrate that in situ phase behaviors of ELP side chains can regulate thermoresponsiveness of protein-based hydrogels. We anticipate that this method can be applied to other elastomeric proteins for potential biomedical applications.

摘要

基于蛋白质的水凝胶能够响应环境刺激改变其物理和机械性能,因此在生物医学工程中有广泛的应用前景,吸引了相当多的关注。在环境刺激中,温度尤其受到关注。大多数热响应蛋白质水凝胶是由热响应弹性蛋白样多肽(ELP)构建的,其具有较低临界溶液温度(LCST)转变,或者与 ELP 融合的无结构弹性蛋白。在这里,我们报告了通过将 ELP 融合到由串联折叠球状蛋白组成的弹性蛋白基弹性体蛋白质上来工程热响应弹性蛋白基水凝胶。通过将 ELP 序列(VPGVG)融合到弹性蛋白(GR)上,GR 由小球状蛋白 GB1(G)和无规卷曲序列弹性蛋白(R)组成,我们设计了一系列蛋白质嵌段共聚物,V-(GR)。融合蛋白 V-(GR)在水溶液中表现出与 V-ELP 不同的温度响应行为,因为它们在浊度测试中没有表现出宏观相转变。相反,在相同浓度下,V48-(GR)和 V72-(GR)在高于 V48 和 V72 的转变温度下形成胶束。使用成熟的钌介导的光化学交联方法,V-(GR)聚合物可以交联成水凝胶,其中 V-ELP 作为水凝胶网络的侧链。由于掺入的 V-ELP 嵌段的温度依赖的相转变行为,这些水凝胶表现出温敏特性。在较高温度下,水凝胶网络中的 V-ELP 侧链发生聚集,导致二级物理交联。V-ELP 的聚集导致更高的杨氏模量和更低的溶胀比。此外,这种性质变化的幅度可以通过侧链长度和组成来调节。这些结果表明,ELP 侧链的原位相行为可以调节蛋白质基水凝胶的温敏性。我们预计,该方法可应用于其他弹性蛋白用于潜在的生物医学应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验