Suppr超能文献

基于超声图像的人工智能诊断甲状腺恶性结节。

Ultrasound Image-Based Diagnosis of Malignant Thyroid Nodule Using Artificial Intelligence.

机构信息

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea.

出版信息

Sensors (Basel). 2020 Mar 25;20(7):1822. doi: 10.3390/s20071822.

Abstract

Computer-aided diagnosis systems have been developed to assist doctors in diagnosing thyroid nodules to reduce errors made by traditional diagnosis methods, which are mainly based on the experiences of doctors. Therefore, the performance of such systems plays an important role in enhancing the quality of a diagnosing task. Although there have been the state-of-the art studies regarding this problem, which are based on handcrafted features, deep features, or the combination of the two, their performances are still limited. To overcome these problems, we propose an ultrasound image-based diagnosis of the malignant thyroid nodule method using artificial intelligence based on the analysis in both spatial and frequency domains. Additionally, we propose the use of weighted binary cross-entropy loss function for the training of deep convolutional neural networks to reduce the effects of unbalanced training samples of the target classes in the training data. Through our experiments with a popular open dataset, namely the thyroid digital image database (TDID), we confirm the superiority of our method compared to the state-of-the-art methods.

摘要

计算机辅助诊断系统已经被开发出来,以帮助医生诊断甲状腺结节,从而减少传统诊断方法(主要基于医生的经验)所导致的错误。因此,此类系统的性能在提高诊断任务的质量方面起着重要作用。尽管已经有一些关于这个问题的最新研究,这些研究基于手工制作的特征、深度特征或两者的结合,但它们的性能仍然有限。为了克服这些问题,我们提出了一种基于人工智能的甲状腺超声图像良恶性结节诊断方法,该方法基于对空间域和频率域的分析。此外,我们还提出了在训练深度卷积神经网络时使用加权二进制交叉熵损失函数,以减少训练数据中目标类别的不平衡训练样本的影响。通过在一个流行的公开数据集,即甲状腺数字图像数据库(TDID)上进行实验,我们证实了我们的方法优于最新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验