Suppr超能文献

卷积神经网络可用于对临床信息生成的二维数组图像进行分类,这可能有助于类风湿性关节炎的诊断。

Convolutional neural network for classification of two-dimensional array images generated from clinical information may support diagnosis of rheumatoid arthritis.

机构信息

Hokkaido Medical Center for Rheumatic Diseases, Sapporo, Japan.

Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.

出版信息

Sci Rep. 2020 Mar 27;10(1):5648. doi: 10.1038/s41598-020-62634-3.

Abstract

This research aimed to study the application of deep learning to the diagnosis of rheumatoid arthritis (RA). Definite criteria or direct markers for diagnosing RA are lacking. Rheumatologists diagnose RA according to an integrated assessment based on scientific evidence and clinical experience. Our novel idea was to convert various clinical information from patients into simple two-dimensional images and then use them to fine-tune a convolutional neural network (CNN) to classify RA or nonRA. We semi-quantitatively converted each type of clinical information to four coloured square images and arranged them as one image for each patient. One rheumatologist modified each patient's clinical information to increase learning data. In total, 1037 images (252 RA, 785 nonRA) were used to fine-tune a pretrained CNN with transfer learning. For clinical data (10 RA, 40 nonRA), which were independent of the learning data and were used as testing data, we compared the classification ability of the fine-tuned CNN with that of three expert rheumatologists. Our simple system could potentially support RA diagnosis and therefore might be useful for screening RA in both specialised hospitals and general clinics. This study paves the way to enabling deep learning in the diagnosis of RA.

摘要

本研究旨在探讨深度学习在类风湿关节炎(RA)诊断中的应用。目前缺乏明确的诊断 RA 的标准或直接标志物。风湿病学家根据基于科学证据和临床经验的综合评估来诊断 RA。我们的新想法是将患者的各种临床信息转换为简单的二维图像,然后使用这些图像来微调卷积神经网络(CNN),以对 RA 或非 RA 进行分类。我们将每种类型的临床信息半定量地转换为四个彩色正方形图像,并将它们排列为每个患者的一张图像。一位风湿病学家修改了每位患者的临床信息,以增加学习数据。总共使用了 1037 张图像(252 张 RA,785 张非 RA)对使用迁移学习进行预训练的 CNN 进行微调。对于独立于学习数据且用作测试数据的临床数据(10 个 RA,40 个非 RA),我们比较了微调后的 CNN 与三位专家风湿病学家的分类能力。我们的简单系统有可能支持 RA 诊断,因此对于在专科医院和综合诊所中筛查 RA 可能很有用。本研究为 RA 诊断中的深度学习铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95bf/7101306/8ba34a32b91c/41598_2020_62634_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验