Suppr超能文献

基于机器学习的共识模型对细胞色素 P450 2C9 介导的药物相互作用潜力的大规模评估。

Large-scale evaluation of cytochrome P450 2C9 mediated drug interaction potential with machine learning-based consensus modeling.

机构信息

Plasma Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary.

Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2., Budapest, 1117, Hungary.

出版信息

J Comput Aided Mol Des. 2020 Aug;34(8):831-839. doi: 10.1007/s10822-020-00308-y. Epub 2020 Mar 27.

Abstract

Cytochrome P450 (CYP) enzymes play an important role in the metabolism of xenobiotics. Since they are connected to drug interactions, screening for potential inhibitors is of utmost importance in drug discovery settings. Our study provides an extensive classification model for P450-drug interactions with one of the most prominent members, the 2C9 isoenzyme. Our model involved the largest set of 45,000 molecules ever used for developing prediction models. The models are based on three different types of descriptors, (a) typical one, two and three dimensional molecular descriptors, (b) chemical and pharmacophore fingerprints and (c) interaction fingerprints with docking scores. Two machine learning algorithms, the boosted tree and the multilayer feedforward of resilient backpropagation network were used and compared based on their performances. The models were validated both internally and using external validation sets. The results showed that the consensus voting technique with custom probability thresholds could provide promising results even in large-scale cases without any restrictions on the applicability domain. Our best model was capable to predict the 2C9 inhibitory activity with the area under the receiver operating characteristic curve (AUC) of 0.85 and 0.84 for the internal and the external test sets, respectively. The chemical space covered with the largest available dataset has reached its limit encompassing publicly available bioactivity data for the 2C9 isoenzyme.

摘要

细胞色素 P450(CYP)酶在异生物质的代谢中起着重要作用。由于它们与药物相互作用有关,因此在药物发现环境中筛选潜在的抑制剂至关重要。我们的研究为 P450-药物相互作用提供了一个广泛的分类模型,其中包括最著名的成员 2C9 同工酶。我们的模型涉及到用于开发预测模型的最大的 45000 个分子集。这些模型基于三种不同类型的描述符:(a)典型的一、二和三维分子描述符,(b)化学和药效团指纹,(c)与对接评分的相互作用指纹。我们使用了两种机器学习算法,即增强树和多层前馈弹性反向传播网络,并根据它们的性能进行了比较。该模型进行了内部和外部验证集的验证。结果表明,即使在没有应用域限制的大规模情况下,使用自定义概率阈值的共识投票技术也可以提供有前途的结果。我们的最佳模型能够以 0.85 和 0.84 的内部和外部测试集接收者操作特征曲线(AUC)来预测 2C9 的抑制活性。用最大可用数据集覆盖的化学空间已经达到了极限,包括 2C9 同工酶的公开可用的生物活性数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7d/7320947/87fd0353cb06/10822_2020_308_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验