Wang Xiao, Berkelbach Timothy C
Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States.
Department of Chemistry, Columbia University, New York, New York 10027, United States.
J Chem Theory Comput. 2020 May 12;16(5):3095-3103. doi: 10.1021/acs.jctc.0c00101. Epub 2020 Apr 9.
We present an ab initio study of electronically excited states of three-dimensional solids using Gaussian-based periodic equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD). The explicit use of translational symmetry, as implemented via Brillouin zone sampling and momentum conservation, is responsible for a large reduction in cost. Our largest system studied, which samples the Brillouin zone using 64 -points (a 4 × 4 × 4 mesh), corresponds to a canonical EOM-CCSD calculation of 768 electrons in 640 orbitals. We study eight simple main-group semiconductors and insulators, with direct singlet excitation energies in the range of 3 to 15 eV. Our predicted excitation energies exhibit a mean signed error of 0.24 eV and a mean absolute error of 0.27 eV when compared to experimental values. Although this error is similar to that found for EOM-CCSD applied to molecules, it may also reflect the role of vibrational effects, which are neglected in the calculations. Our results support recently proposed revisions of experimental optical gaps for AlP and cubic BN. We furthermore calculate the energy of excitons with nonzero momentum and compare the exciton dispersion of LiF with experimental data from inelastic X-ray scattering. By calculating excitation energies under strain, we extract hydrostatic deformation potentials to quantify the strength of interactions between excitons and acoustic phonons. Our results indicate that coupled-cluster theory is a promising method for the accurate study of a variety of exciton phenomena in solids.
我们使用基于高斯的含单双激发的周期运动方程耦合簇理论(EOM - CCSD)对三维固体的电子激发态进行了从头算研究。通过布里渊区采样和动量守恒实现的平移对称性的明确使用,使得计算成本大幅降低。我们研究的最大系统使用64个点(4×4×4网格)对布里渊区进行采样,这相当于对640个轨道中的768个电子进行标准的EOM - CCSD计算。我们研究了八种简单的主族半导体和绝缘体,其直接单重激发能在3至15电子伏特范围内。与实验值相比,我们预测的激发能平均符号误差为0.24电子伏特,平均绝对误差为0.27电子伏特。尽管这个误差与应用于分子的EOM - CCSD所发现的误差相似,但它也可能反映了振动效应的作用,而在计算中忽略了这些效应。我们的结果支持最近对AlP和立方BN的实验光学带隙提出的修正。此外,我们计算了非零动量激子的能量,并将LiF的激子色散与非弹性X射线散射的实验数据进行了比较。通过计算应变下的激发能,我们提取了流体静压力变形势,以量化激子与声子之间相互作用的强度。我们的结果表明,耦合簇理论是准确研究固体中各种激子现象的一种有前途的方法。