Suppr超能文献

一种新型无线刺激方法的多维分析。

A Multi-Dimensional Analysis of a Novel Approach for Wireless Stimulation.

出版信息

IEEE Trans Biomed Eng. 2020 Dec;67(12):3307-3316. doi: 10.1109/TBME.2020.2983443. Epub 2020 Nov 19.

Abstract

UNLABELLED

The elimination of integrated batteries in biomedical implants holds great promise for improving health outcomes in patients with implantable devices. However, despite extensive research in wireless power transfer, achieving efficient power transfer and effective operational range have remained a hindering challenge within anatomical constraints.

OBJECTIVE

We hereby demonstrate an intravascular wireless and batteryless microscale stimulator, designed for (1) low power dissipation via intermittent transmission and (2) reduced fixation mechanical burden via deployment to the anterior cardiac vein (ACV, ∼3.8 mm in diameter).

METHODS

We introduced a unique coil design circumferentially confined to a 3 mm diameter hollow-cylinder that was driven by a novel transmitter-based control architecture with improved power efficiency.

RESULTS

We examined wireless capacity using heterogenous bovine tissue, demonstrating >5 V stimulation threshold with up to 20 mm transmitter-receiver displacement and 20° of misalignment. Feasibility for human use was validated using Finite Element Method (FEM) simulation of the cardiac cycle, guided by pacer phantom-integrated Magnetic Resonance Images (MRI).

CONCLUSION

This system design thus enabled sufficient wireless power transfer in the face of extensive stimulator miniaturization.

SIGNIFICANCE

Our successful feasibility studies demonstrated the capacity for minimally invasive deployment and low-risk fixation.

摘要

未加标签:消除生物医学植入物中的集成电池有望改善植入设备患者的健康结果。然而,尽管在无线功率传输方面进行了广泛的研究,但在解剖学限制内实现高效的功率传输和有效的操作范围仍然是一个阻碍挑战。

目的:我们在此展示一种血管内无线和无电池的微尺度刺激器,旨在(1)通过间歇性传输实现低功耗,(2)通过部署到前心静脉(ACV,直径约 3.8 毫米)来减少固定机械负担。

方法:我们引入了一种独特的线圈设计,其圆周限制在一个 3 毫米直径的空心圆柱体内,由一种具有改进功率效率的新型基于发射器的控制架构驱动。

结果:我们使用异种牛组织检查了无线容量,证明了在发射器-接收器位移高达 20 毫米和 20°不对准的情况下,刺激阈值超过 5 V。使用带有起搏器虚拟集成磁共振成像(MRI)的心脏周期有限元方法(FEM)模拟验证了对人类使用的可行性。

结论:因此,这种系统设计使得在刺激器的微型化程度很高的情况下,仍然能够进行足够的无线功率传输。

意义:我们的成功可行性研究证明了微创部署和低风险固定的能力。

相似文献

1
A Multi-Dimensional Analysis of a Novel Approach for Wireless Stimulation.
IEEE Trans Biomed Eng. 2020 Dec;67(12):3307-3316. doi: 10.1109/TBME.2020.2983443. Epub 2020 Nov 19.
2
In Vivo Intravascular Pacing Using a Wireless Microscale Stimulator.
Ann Biomed Eng. 2021 Sep;49(9):2094-2102. doi: 10.1007/s10439-021-02729-8. Epub 2021 Feb 3.
4
Wireless Pacing Using an Asynchronous Three-Tiered Inductive Power Transfer System.
Ann Biomed Eng. 2020 Apr;48(4):1368-1381. doi: 10.1007/s10439-020-02450-y. Epub 2020 Jan 23.
5
Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1859-62. doi: 10.1109/EMBC.2013.6609886.
6
Optimal position of the transmitter coil for wireless power transfer to the implantable device.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6549-52. doi: 10.1109/EMBC.2014.6945128.
7
Design of a mid-field wireless power transmission system for deep-tissue implants.
Technol Health Care. 2024;32(3):1341-1349. doi: 10.3233/THC-230219.
8
Wearable wireless power systems for 'ME-BIT' magnetoelectric-powered bio implants.
J Neural Eng. 2021 Jul 26;18(4). doi: 10.1088/1741-2552/ac1178.
9
Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.
Med Biol Eng Comput. 2012 Sep;50(9):973-80. doi: 10.1007/s11517-012-0939-z. Epub 2012 Jul 18.

引用本文的文献

2
In Vivo Intravascular Pacing Using a Wireless Microscale Stimulator.
Ann Biomed Eng. 2021 Sep;49(9):2094-2102. doi: 10.1007/s10439-021-02729-8. Epub 2021 Feb 3.

本文引用的文献

1
Wireless Pacing Using an Asynchronous Three-Tiered Inductive Power Transfer System.
Ann Biomed Eng. 2020 Apr;48(4):1368-1381. doi: 10.1007/s10439-020-02450-y. Epub 2020 Jan 23.
2
Symbiotic cardiac pacemaker.
Nat Commun. 2019 Apr 23;10(1):1821. doi: 10.1038/s41467-019-09851-1.
3
Simulating Developmental Cardiac Morphology in Virtual Reality Using a Deformable Image Registration Approach.
Ann Biomed Eng. 2018 Dec;46(12):2177-2188. doi: 10.1007/s10439-018-02113-z. Epub 2018 Aug 15.
4
Minimally Invasive Implantation of a Micropacemaker Into the Pericardial Space.
Circ Arrhythm Electrophysiol. 2018 Jul;11(7):e006307. doi: 10.1161/CIRCEP.118.006307.
6
Design and Testing of a Transcutaneous RF Recharging System for a Fetal Micropacemaker.
IEEE Trans Biomed Circuits Syst. 2017 Apr;11(2):336-346. doi: 10.1109/TBCAS.2016.2620805. Epub 2017 Feb 13.
7
State of the art of leadless pacing.
Europace. 2015 Oct;17(10):1508-13. doi: 10.1093/europace/euv096. Epub 2015 May 29.
8
A Figure-of-Merit for Designing High-Performance Inductive Power Transmission Links.
IEEE Trans Ind Electron. 2012 Nov 16;60(11):5292-5305. doi: 10.1109/TIE.2012.2227914.
9
Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester.
Adv Mater. 2014 Jul 23;26(28):4880-7. doi: 10.1002/adma.201400562. Epub 2014 Apr 17.
10
Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark.
Eur Heart J. 2014 May;35(18):1186-94. doi: 10.1093/eurheartj/eht511. Epub 2013 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验