IEEE Trans Biomed Eng. 2020 Dec;67(12):3307-3316. doi: 10.1109/TBME.2020.2983443. Epub 2020 Nov 19.
The elimination of integrated batteries in biomedical implants holds great promise for improving health outcomes in patients with implantable devices. However, despite extensive research in wireless power transfer, achieving efficient power transfer and effective operational range have remained a hindering challenge within anatomical constraints.
We hereby demonstrate an intravascular wireless and batteryless microscale stimulator, designed for (1) low power dissipation via intermittent transmission and (2) reduced fixation mechanical burden via deployment to the anterior cardiac vein (ACV, ∼3.8 mm in diameter).
We introduced a unique coil design circumferentially confined to a 3 mm diameter hollow-cylinder that was driven by a novel transmitter-based control architecture with improved power efficiency.
We examined wireless capacity using heterogenous bovine tissue, demonstrating >5 V stimulation threshold with up to 20 mm transmitter-receiver displacement and 20° of misalignment. Feasibility for human use was validated using Finite Element Method (FEM) simulation of the cardiac cycle, guided by pacer phantom-integrated Magnetic Resonance Images (MRI).
This system design thus enabled sufficient wireless power transfer in the face of extensive stimulator miniaturization.
Our successful feasibility studies demonstrated the capacity for minimally invasive deployment and low-risk fixation.
未加标签:消除生物医学植入物中的集成电池有望改善植入设备患者的健康结果。然而,尽管在无线功率传输方面进行了广泛的研究,但在解剖学限制内实现高效的功率传输和有效的操作范围仍然是一个阻碍挑战。
目的:我们在此展示一种血管内无线和无电池的微尺度刺激器,旨在(1)通过间歇性传输实现低功耗,(2)通过部署到前心静脉(ACV,直径约 3.8 毫米)来减少固定机械负担。
方法:我们引入了一种独特的线圈设计,其圆周限制在一个 3 毫米直径的空心圆柱体内,由一种具有改进功率效率的新型基于发射器的控制架构驱动。
结果:我们使用异种牛组织检查了无线容量,证明了在发射器-接收器位移高达 20 毫米和 20°不对准的情况下,刺激阈值超过 5 V。使用带有起搏器虚拟集成磁共振成像(MRI)的心脏周期有限元方法(FEM)模拟验证了对人类使用的可行性。
结论:因此,这种系统设计使得在刺激器的微型化程度很高的情况下,仍然能够进行足够的无线功率传输。
意义:我们的成功可行性研究证明了微创部署和低风险固定的能力。