Department of Medicine, New York University School of Medicine, New York, New York.
Department of Microbiology, New York University School of Medicine, New York, New York.
Curr Protoc Microbiol. 2020 Jun;57(1):e99. doi: 10.1002/cpmc.99.
The genomes of DNA viruses encode deceptively complex transcriptomes evolved to maximize coding potential within the confines of a relatively small genome. Defining the full range of viral RNAs produced during an infection is key to understanding the viral replication cycle and its interactions with the host cell. Traditional short-read (Illumina) sequencing approaches are problematic in this setting due to the difficulty of assigning short reads to individual RNAs in regions of transcript overlap and to the biases introduced by the required recoding and amplification steps. Additionally, different methodologies may be required to analyze the 5' and 3' ends of RNAs, which increases both cost and effort. The advent of long-read nanopore sequencing simplifies this approach by providing a single assay that captures and sequences full length RNAs, either in cDNA or native RNA form. The latter is particularly appealing as it reduces known recoding biases whilst allowing more advanced analyses such as estimation of poly(A) tail length and the detection of RNA modifications including N -methyladenosine. Using herpes simplex virus (HSV)-infected primary fibroblasts as a template, we provide a step-by-step guide to the production of direct RNA sequencing libraries suitable for sequencing using Oxford Nanopore Technologies platforms and provide a simple computational approach to deriving a high-quality annotation of the HSV transcriptome from the resulting sequencing data. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Productive infection of primary fibroblasts with herpes simplex virus Support Protocol: Cell passage and plating of primary fibroblasts Basic Protocol 2: Preparation and sequencing of dRNA-seq libraries from virus-infected cells Basic Protocol 3: Processing, alignment, and analysis of dRNA-seq datasets.
DNA 病毒的基因组编码了复杂的转录组,这些转录组经过进化,最大限度地提高了相对较小基因组中的编码潜力。在感染过程中定义产生的全部病毒 RNA 范围是理解病毒复制周期及其与宿主细胞相互作用的关键。在这种情况下,传统的短读(Illumina)测序方法存在问题,因为难以将短读分配给转录重叠区域中的各个 RNA,并且需要重新编码和扩增步骤会引入偏差。此外,可能需要不同的方法来分析 RNA 的 5' 和 3' 端,这会增加成本和工作量。长读长纳米孔测序的出现通过提供一种单一的测定方法简化了这种方法,该方法可以捕获和测序全长 RNA,可以是 cDNA 形式,也可以是天然 RNA 形式。后者特别吸引人,因为它减少了已知的重新编码偏差,同时允许进行更高级的分析,例如估计 poly(A) 尾长和检测 RNA 修饰,包括 N -甲基腺苷。我们使用单纯疱疹病毒(HSV)感染的原代成纤维细胞作为模板,提供了一种逐步指南,用于制备适合牛津纳米孔技术平台测序的直接 RNA 测序文库,并提供了一种简单的计算方法,从产生的测序数据中推导出 HSV 转录组的高质量注释。© 2020 年,John Wiley & Sons,Inc. 基本方案 1:用单纯疱疹病毒感染原代成纤维细胞 支持方案:原代成纤维细胞的传代和铺板 基本方案 2:从病毒感染细胞制备和测序 dRNA-seq 文库 基本方案 3:dRNA-seq 数据集的处理、比对和分析