Fazio E, Scala A, Grimato S, Ridolfo A, Grassi G, Neri F
Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, V.le F. Stagno d'Alcontres 31, 98166, Messina, Italy.
J Mater Chem B. 2015 Dec 14;3(46):9023-9032. doi: 10.1039/c5tb01076d. Epub 2015 Oct 26.
In this work a new remotely-triggered drug delivery system based on PEG-PLGA_Au nanocomposite is proposed. Due to the optical properties of gold nanoparticles (Au NPs), the nanovector allows on-demand control of the dose, the timing and the duration of the drug release, upon irradiation with red laser light. The Au NPs are synthesized by laser ablation and subsequently embedded into the PEG-PLGA copolymer via a modified emulsion-diffusion method, devised in such a way that both Au NPs and silibinin (SLB), a flavonolignan with promising anti-neoplastic effects, can be co-loaded into the polymeric system in a single step procedure. A combination of analytical techniques including nuclear magnetic resonance (NMR), static and dynamic light scattering (SLS, DLS), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), infrared (FTIR) spectroscopy and scanning/transmission electron microscopies (SEM/STEM/TEM), have been used to study the structural and morphological properties of the nanocomposite. The loading efficiency and the drug content, evaluated by UV-vis absorption optical spectroscopy, are 89% and 8.8%, respectively. Upon laser irradiation the system releases the encapsulated drug with a higher efficiency (∼10%) than that without irradiation. This behaviour indicates that our nanoplatform is responsive to light and it could be considered a promising new type of light-activated drug delivery carrier applicable to the biomedical field.
在这项工作中,提出了一种基于聚乙二醇-聚乳酸-羟基乙酸共聚物_金纳米复合材料的新型远程触发药物递送系统。由于金纳米颗粒(Au NPs)的光学性质,该纳米载体在红色激光照射下能够对药物释放的剂量、时间和持续时间进行按需控制。通过激光烧蚀合成金纳米颗粒,随后通过改进的乳液扩散法将其嵌入聚乙二醇-聚乳酸-羟基乙酸共聚物中,该方法的设计使得金纳米颗粒和水飞蓟宾(SLB,一种具有良好抗肿瘤作用的黄酮木脂素)能够在单个步骤中共同负载到聚合物体系中。包括核磁共振(NMR)、静态和动态光散射(SLS、DLS)、凝胶渗透色谱(GPC)、热重分析(TGA)、X射线光电子能谱(XPS)、红外(FTIR)光谱以及扫描/透射电子显微镜(SEM/STEM/TEM)在内的多种分析技术已被用于研究纳米复合材料的结构和形态特性。通过紫外可见吸收光谱法评估的负载效率和药物含量分别为89%和8.8%。激光照射时,该系统释放封装药物的效率比未照射时更高(约10%)。这种行为表明我们的纳米平台对光有响应,并且可以被认为是一种适用于生物医学领域的新型光激活药物递送载体。