Suppr超能文献

基于视频的 AI 用于逐拍评估心功能。

Video-based AI for beat-to-beat assessment of cardiac function.

机构信息

Department of Medicine, Stanford University, Stanford, CA, USA.

Department of Computer Science, Stanford University, Stanford, CA, USA.

出版信息

Nature. 2020 Apr;580(7802):252-256. doi: 10.1038/s41586-020-2145-8. Epub 2020 Mar 25.

Abstract

Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease, screening for cardiotoxicity and decisions regarding the clinical management of patients with a critical illness. However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training. Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.

摘要

准确评估心脏功能对于心血管疾病的诊断、心脏毒性的筛查以及危重病患者的临床管理决策至关重要。然而,人类对心脏功能的评估仅限于对有限数量的心脏周期进行采样,尽管经过多年的培训,仍然存在很大的观察者间变异性。在这里,为了克服这一挑战,我们提出了一种基于视频的深度学习算法——EchoNet-Dynamic,该算法在分割左心室、估计射血分数和评估心肌病等关键任务上的表现超过了人类专家。该模型在超声心动图视频上进行训练,其左心室分割的 Dice 相似系数为 0.92,预测射血分数的平均绝对误差为 4.1%,可靠地分类射血分数降低的心力衰竭(曲线下面积为 0.97)。在另一个医疗保健系统的外部数据集上,EchoNet-Dynamic 预测射血分数的平均绝对误差为 6.0%,分类射血分数降低的心力衰竭的曲线下面积为 0.96。通过对重复的人类测量进行前瞻性评估,确认该模型的方差与人类专家的方差相当或更小。通过利用多个心脏周期的信息,我们的模型可以快速识别射血分数的细微变化,比人类评估更具可重复性,并为实时精确诊断心血管疾病奠定了基础。作为促进进一步创新的资源,我们还公开了一个包含 10030 个注释超声心动图视频的大型数据集。

相似文献

1
Video-based AI for beat-to-beat assessment of cardiac function.基于视频的 AI 用于逐拍评估心功能。
Nature. 2020 Apr;580(7802):252-256. doi: 10.1038/s41586-020-2145-8. Epub 2020 Mar 25.

引用本文的文献

2

本文引用的文献

1
Deep learning interpretation of echocardiograms.超声心动图的深度学习解读
NPJ Digit Med. 2020 Jan 24;3:10. doi: 10.1038/s41746-019-0216-8. eCollection 2020.
6
Fully Automated Echocardiogram Interpretation in Clinical Practice.临床实践中的全自动超声心动图解读。
Circulation. 2018 Oct 16;138(16):1623-1635. doi: 10.1161/CIRCULATIONAHA.118.034338.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验