Suppr超能文献

利用非配对 CT 结构先验进行高分辨率胸部 X 射线骨骼抑制。

High-Resolution Chest X-Ray Bone Suppression Using Unpaired CT Structural Priors.

出版信息

IEEE Trans Med Imaging. 2020 Oct;39(10):3053-3063. doi: 10.1109/TMI.2020.2986242. Epub 2020 Apr 7.

Abstract

There is clinical evidence that suppressing the bone structures in Chest X-rays (CXRs) improves diagnostic value, either for radiologists or computer-aided diagnosis. However, bone-free CXRs are not always accessible. We hereby propose a coarse-to-fine CXR bone suppression approach by using structural priors derived from unpaired computed tomography (CT) images. In the low-resolution stage, we use the digitally reconstructed radiograph (DRR) image that is computed from CT as a bridge to connect CT and CXR. We then perform CXR bone decomposition by leveraging the DRR bone decomposition model learned from unpaired CTs and domain adaptation between CXR and DRR. To further mitigate the domain differences between CXRs and DRRs and speed up the learning convergence, we perform all the aboved operations in Laplacian of Gaussian (LoG) domain. After obtaining the bone decomposition result in DRR, we upsample it to a high resolution, based on which the bone region in the original high-resolution CXR is cropped and processed to produce a high-resolution bone decomposition result. Finally, such a produced bone image is subtracted from the original high-resolution CXR to obtain the bone suppression result. We conduct experiments and clinical evaluations based on two benchmarking CXR databases to show that (i) the proposed method outperforms the state-of-the-art unsupervised CXR bone suppression approaches; (ii) the CXRs with bone suppression are instrumental to radiologists for reducing their false-negative rate of lung diseases from 15% to 8%; and (iii) state-of-the-art disease classification performances are achieved by learning a deep network that takes the original CXR and its bone-suppressed image as inputs.

摘要

有临床证据表明,抑制胸部 X 光片(CXRs)中的骨骼结构可以提高诊断价值,无论是对放射科医生还是计算机辅助诊断都有帮助。然而,并非总是可以获得无骨 CXR。为此,我们提出了一种基于结构先验的粗到细的 CXR 骨骼抑制方法,该先验是从未配对的计算机断层扫描(CT)图像中获得的。在低分辨率阶段,我们使用从 CT 计算得到的数字重建射线照片(DRR)图像作为连接 CT 和 CXR 的桥梁。然后,我们通过利用从未配对 CT 学习到的 DRR 骨骼分解模型以及 CXR 和 DRR 之间的域自适应,来执行 CXR 骨骼分解。为了进一步减轻 CXR 和 DRR 之间的域差异并加快学习收敛速度,我们在拉普拉斯高斯(LoG)域中执行所有上述操作。在获得 DRR 中的骨骼分解结果后,我们将其上采样到高分辨率,基于此,从原始高分辨率 CXR 中裁剪出骨骼区域并进行处理,以生成高分辨率骨骼分解结果。最后,从原始高分辨率 CXR 中减去生成的骨骼图像,以获得骨骼抑制结果。我们基于两个基准 CXR 数据库进行实验和临床评估,结果表明:(i)所提出的方法优于最先进的无监督 CXR 骨骼抑制方法;(ii)具有骨骼抑制的 CXR 有助于放射科医生将其肺部疾病的假阴性率从 15%降低到 8%;(iii)通过学习一个将原始 CXR 及其骨骼抑制图像作为输入的深度网络,可以实现最先进的疾病分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验