Suppr超能文献

基于尺度混合模型的光学相干断层扫描图像超分辨率技术

Super-Resolution of Optical Coherence Tomography Images by Scale Mixture Models.

作者信息

Daneshmand Parisa Ghaderi, Rabbani Hossein, Mehridehnavi Alireza

出版信息

IEEE Trans Image Process. 2020 Apr 7. doi: 10.1109/TIP.2020.2984896.

Abstract

In this paper, a new statistical model is proposed for the single image super-resolution of retinal Optical Coherence Tomography (OCT) images. OCT imaging relies on interfero-metry, which explains why OCT images suffer from a high level of noise. Moreover, data subsampling is carried out during the acquisition of OCT A-scans and B-scans. So, it is necessary to utilize effective super-resolution algorithms to reconstruct high-resolution clean OCT images. In this paper, a nonlocal sparse model-based Bayesian framework is proposed for OCT restoration. For this reason, by characterizing nonlocal patches with similar structures, known as a group, the sparse coefficients of each group of OCT images are modeled by the scale mixture models. In this base, the coefficient vector is decomposed into the point-wise product of a random vector and a positive scaling variable. Estimation of the sparse coefficients depends on the proposed distribution for the random vector and scaling variable where the Laplacian random vector and Generalized Extreme-Value (GEV) scale parameter (Laplacian+GEV model) show the best goodness of fit for each group of OCT images. Finally, a new OCT super-resolution method based on this new scale mixture model is introduced, where the maximum a posterior estimation of both sparse coefficients and scaling variables are calculated efficiently by applying an alternating minimization method. Our experimental results prove that the proposed OCT super-resolution method based on the Laplacian+GEV model outperforms other competing methods in terms of both subjective and objective visual qualities.

摘要

本文提出了一种用于视网膜光学相干断层扫描(OCT)图像单图像超分辨率的新统计模型。OCT成像依赖于干涉测量,这解释了为什么OCT图像存在高水平噪声。此外,在OCT A扫描和B扫描的采集过程中进行了数据子采样。因此,有必要利用有效的超分辨率算法来重建高分辨率的清晰OCT图像。本文提出了一种基于非局部稀疏模型的贝叶斯框架用于OCT恢复。为此,通过将具有相似结构的非局部块表征为一个组,每组OCT图像的稀疏系数由尺度混合模型建模。在此基础上,系数向量被分解为一个随机向量和一个正缩放变量的逐点乘积。稀疏系数的估计取决于为随机向量和缩放变量提出的分布,其中拉普拉斯随机向量和广义极值(GEV)尺度参数(拉普拉斯+GEV模型)对每组OCT图像显示出最佳的拟合优度。最后,引入了一种基于这种新尺度混合模型的新型OCT超分辨率方法,其中通过应用交替最小化方法有效地计算了稀疏系数和缩放变量的最大后验估计。我们的实验结果证明,所提出的基于拉普拉斯+GEV模型的OCT超分辨率方法在主观和客观视觉质量方面均优于其他竞争方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验