Suppr超能文献

使用神经网络和手机传感器评估帕金森病患者的状况

Assessment of the Status of Patients with Parkinson's Disease Using Neural Networks and Mobile Phone Sensors.

作者信息

Shichkina Yulia, Stanevich Elizaveta, Irishina Yulia

机构信息

St.Petersburg State Electrotechnical University "LETI", St.Petersburg 197376, Russia.

N.P.Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, St.Petersburg 197376, Russia.

出版信息

Diagnostics (Basel). 2020 Apr 12;10(4):214. doi: 10.3390/diagnostics10040214.

Abstract

Parkinson's disease (PD) is one of the most common chronic neurological diseases and one of the significant causes of disability for middle-aged and elderly people. Monitoring the patient's condition and its compliance is the key to the success of the correction of the main clinical manifestations of PD, including the almost inevitable modification of the clinical picture of the disease against the background of prolonged dopaminergic therapy. In this article, we proposed an approach to assessing the condition of patients with PD using deep recurrent neural networks, trained on data measured using mobile phones. The data was received in two modes: background (data from the phone's sensors) and interactive (data directly entered by the user). For the classification of the patient's condition, we built various models of the neural network. Testing of these models showed that the most efficient was a recurrent network with two layers. The results of the experiment show that with a sufficient amount of the training sample, it is possible to build a neural network that determines the condition of the patient according to the data from the mobile phone sensors with a high probability.

摘要

帕金森病(PD)是最常见的慢性神经疾病之一,也是中老年人残疾的重要原因之一。监测患者的病情及其依从性是纠正PD主要临床表现成功的关键,包括在长期多巴胺能治疗背景下疾病临床表现几乎不可避免的改变。在本文中,我们提出了一种使用深度循环神经网络评估帕金森病患者病情的方法,该网络基于使用手机测量的数据进行训练。数据以两种模式接收:背景模式(来自手机传感器的数据)和交互模式(用户直接输入的数据)。为了对患者病情进行分类,我们构建了各种神经网络模型。对这些模型的测试表明,最有效的是一个两层循环网络。实验结果表明,在有足够数量训练样本的情况下,有可能构建一个神经网络,根据手机传感器的数据以高概率确定患者的病情。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72b1/7235735/34afe7621c33/diagnostics-10-00214-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验