Suppr超能文献

一种用于从不完整数据中学习卷积图像原子的凸变分模型。

A Convex Variational Model for Learning Convolutional Image Atoms from Incomplete Data.

作者信息

Chambolle A, Holler M, Pock T

机构信息

1Centre de Mathématiques Appliquées, École Polytechnique, Paris, France.

2Institute of Mathematics and Scientific Computing, University of Graz, Graz, Austria.

出版信息

J Math Imaging Vis. 2020;62(3):417-444. doi: 10.1007/s10851-019-00919-7. Epub 2019 Nov 18.

Abstract

A variational model for learning convolutional image atoms from corrupted and/or incomplete data is introduced and analyzed both in function space and numerically. Building on lifting and relaxation strategies, the proposed approach is convex and allows for simultaneous image reconstruction and atom learning in a general, inverse problems context. Further, motivated by an improved numerical performance, also a semi-convex variant is included in the analysis and the experiments of the paper. For both settings, fundamental analytical properties allowing in particular to ensure well-posedness and stability results for inverse problems are proven in a continuous setting. Exploiting convexity, globally optimal solutions are further computed numerically for applications with incomplete, noisy and blurry data and numerical results are shown.

摘要

本文介绍并分析了一种用于从损坏和/或不完整数据中学习卷积图像原子的变分模型,该分析在函数空间和数值方面均有进行。基于提升和松弛策略,所提出的方法是凸的,并且在一般的反问题背景下允许同时进行图像重建和原子学习。此外,出于改进数值性能的考虑,本文的分析和实验中还纳入了一个半凸变体。对于这两种设置,在连续设置中证明了一些基本分析性质,这些性质尤其能够确保反问题的适定性和稳定性结果。利用凸性,针对具有不完整、噪声和模糊数据的应用进一步通过数值计算得到全局最优解,并展示了数值结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d497/7138786/3c446bac98e5/10851_2019_919_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验