Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
Curr Opin Biotechnol. 2020 Aug;64:151-160. doi: 10.1016/j.copbio.2020.02.018. Epub 2020 Apr 15.
Metabolite concentrations, fluxes, and free energies constitute the basis for understanding and controlling metabolism. Mass spectrometry and stable isotopes are integral tools in quantifying these metabolic features. For absolute metabolite concentration and flux measurement, C internal standards and tracers have been the gold standard. In contrast, no established methods exist for comprehensive thermodynamic quantitation under physiological environments. Recently, using high-resolution mass spectrometry and multi-isotope tracing, flux quantitation has been increasingly adopted in broader metabolism. The improved flux quantitation led to determination of Gibbs free energy of reaction (ΔG) in central carbon metabolism using a relationship between reaction reversibility and thermodynamic driving force. Here we highlight recent advances in multi-isotope tracing for metabolic flux and free energy analysis.
代谢物浓度、通量和自由能是理解和控制代谢的基础。质谱和稳定同位素是定量这些代谢特征的不可或缺的工具。对于绝对代谢物浓度和通量的测量,C 内标和示踪剂一直是金标准。相比之下,在生理环境下,还没有建立全面热力学定量的既定方法。最近,使用高分辨率质谱和多同位素示踪,通量定量已在更广泛的代谢中得到越来越多的应用。通量定量的改进导致了利用反应可逆性和热力学驱动力之间的关系,来确定中心碳代谢中反应的吉布斯自由能(ΔG)。在这里,我们重点介绍多同位素示踪在代谢通量和自由能分析方面的最新进展。