Suppr超能文献

评估高阶临床危险因素对动脉瘤性蛛网膜下腔出血患者预后预测的贡献。

Assessing Contribution of Higher Order Clinical Risk Factors to Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage Patients.

作者信息

Tabaie Azade, Nemati Shamim, Allen Jason W, Chung Charlotte, Queiroga Flavia, Kuk Won-Jun, Prater Adam B

机构信息

Department of Biomedical Informatics, Emory School of Medicine, Atlanta, GA, USA.

出版信息

AMIA Annu Symp Proc. 2020 Mar 4;2019:848-856. eCollection 2019.

Abstract

The goal of this study was to investigate the application of machine learning models capable of capturing multiplica tive and temporal clinical risk factors for outcome prediction inpatients with aneurysmal subarachnoid hemorrhage (aSAH). We examined a cohort of 575 aSAH patients from Emory Healthcare, identified via digital subtraction angiog- raphy. The outcome measure was the modified Ranking Scale (mRS) after 90 days. Predictions were performed with longitudinal clinical and imaging risk factors as inputs into a regularized Logistic Regression, a feedforward Neural Network and a multivariate time-series prediction model known as the long short-term memory (LSTM) architecture. Through extraction of higher-order risk factors, the LSTM model achieved an AUC of 0.89 eight days into hospitaliza tion, outperforming other techniques. Our preliminary findings indicate the proposed model has the potential to aid treatment decisions and effective imaging resource utilization in high-risk patients by providing actionable predictions prior to the development of neurological deterioration.

摘要

本研究的目的是调查能够捕捉动脉瘤性蛛网膜下腔出血(aSAH)患者结局预测的乘法和时间临床风险因素的机器学习模型的应用。我们检查了来自埃默里医疗保健公司的575例aSAH患者队列,这些患者通过数字减影血管造影术确定。结局指标是90天后的改良Rankin量表(mRS)。以纵向临床和影像风险因素作为输入,对正则化逻辑回归、前馈神经网络和一种称为长短期记忆(LSTM)架构的多变量时间序列预测模型进行预测。通过提取高阶风险因素,LSTM模型在入院八天时的曲线下面积(AUC)达到0.89,优于其他技术。我们的初步研究结果表明,所提出的模型有可能通过在神经功能恶化发生之前提供可操作的预测,帮助高危患者做出治疗决策并有效利用影像资源。

相似文献

2
CRP (C-Reactive Protein) in Outcome Prediction After Subarachnoid Hemorrhage and the Role of Machine Learning.
Stroke. 2021 Oct;52(10):3276-3285. doi: 10.1161/STROKEAHA.120.030950. Epub 2021 Jul 9.
6
Predictors of excellent functional outcome in aneurysmal subarachnoid hemorrhage.
J Neurosurg. 2015 Feb;122(2):414-8. doi: 10.3171/2014.10.JNS14290. Epub 2014 Dec 12.
7
Analysis of subarachnoid hemorrhage using the Nationwide Inpatient Sample: the NIS-SAH Severity Score and Outcome Measure.
J Neurosurg. 2014 Aug;121(2):482-9. doi: 10.3171/2014.4.JNS131100. Epub 2014 Jun 20.
10
Prediction of outcome after subarachnoid hemorrhage: timing of clinical assessment.
J Neurosurg. 2017 Jan;126(1):52-59. doi: 10.3171/2016.1.JNS152136. Epub 2016 Apr 1.

本文引用的文献

3
Hematologic counts as predictors of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage.
J Crit Care. 2017 Feb;37:126-129. doi: 10.1016/j.jcrc.2016.09.011. Epub 2016 Sep 22.
4
An Approach for Incorporating Context in Building Probabilistic Predictive Models.
Proc IEEE Int Conf Healthc Inform Imaging Syst Biol. 2012 Sep;2012:96-105. doi: 10.1109/HISB.2012.30. Epub 2012 Dec 3.
6
Prediction of outcome after subarachnoid hemorrhage: timing of clinical assessment.
J Neurosurg. 2017 Jan;126(1):52-59. doi: 10.3171/2016.1.JNS152136. Epub 2016 Apr 1.
10
Utility of Screening for Cerebral Vasospasm Using Digital Subtraction Angiography.
Stroke. 2015 Nov;46(11):3137-41. doi: 10.1161/STROKEAHA.115.010081. Epub 2015 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验