United States Department of Agriculture, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, 61604-3902, USA.
Area of Microbiology, University of León, Campus de Ponferrada, 24400, Ponferrada, Spain.
Appl Microbiol Biotechnol. 2020 Jun;104(12):5185-5199. doi: 10.1007/s00253-020-10612-0. Epub 2020 Apr 23.
Trichothecenes are sesquiterpene toxins produced by diverse but relatively few fungal species in at least three classes of Ascomycetes: Dothideomycetes, Eurotiomycetes, and Sordariomycetes. Approximately 200 structurally distinct trichothecene analogs have been described, but a given fungal species typically produces only a small subset of analogs. All trichothecenes share a core structure consisting of a four-ring nucleus known as 12,13-epoxytrichothec-9-ene. This structure can be substituted at various positions with hydroxyl, acyl, or keto groups to give rise to the diversity of trichothecene structures that has been described. Over the last 30 years, the genetic and biochemical pathways required for trichothecene biosynthesis in several species of the fungi Fusarium and Trichoderma have been elucidated. In addition, phylogenetic and functional analyses of trichothecene biosynthetic (TRI) genes from fungi in multiple genera have provided insights into how acquisition, loss, and changes in functions of TRI genes have given rise to the diversity of trichothecene structures. These analyses also suggest both divergence and convergence of TRI gene function during the evolutionary history of trichothecene biosynthesis. What has driven trichothecene structural diversification remains an unanswered question. However, insight into the role of trichothecenes in plant pathogenesis of Fusarium species and into plant glucosyltransferases that detoxify the toxins by glycosylating them point to a possible driver. Because the glucosyltransferases can have substrate specificity, changes in trichothecene structures produced by a fungus could allow it to evade detoxification by the plant enzymes. Thus, it is possible that advantages conferred by evading detoxification have contributed to trichothecene structural diversification. KEY POINTS : • TRI genes have evolved by diverse processes: loss, acquisition and changes in function. • Some TRI genes have acquired the same function by convergent evolution. • Some other TRI genes have evolved divergently to have different functions. • Some TRI genes were acquired or resulted from diversification in function of other genes. • Substrate specificity of plant glucosyltransferases could drive trichothecene diversity.
散囊菌纲、粪壳菌纲和丝孢纲。已经描述了大约 200 种结构不同的三萜烯类似物,但给定的真菌物种通常只产生少数几种类似物。所有三萜烯都具有一个由四个环组成的核心结构,称为 12,13-环氧三萜-9-烯。这个结构可以在不同位置被羟基、酰基或酮基取代,从而产生已描述的三萜烯结构的多样性。在过去的 30 年中,几种真菌属(如镰刀菌属和木霉属)中三萜烯生物合成的遗传和生化途径已经被阐明。此外,对来自多个属真菌的三萜烯生物合成(TRI)基因的系统发育和功能分析,提供了关于 TRI 基因的获得、丧失和功能变化如何导致三萜烯结构多样性的见解。这些分析还表明,在三萜烯生物合成的进化历史中,TRI 基因的功能既有分歧也有趋同。驱动三萜烯结构多样化的原因仍然是一个未解决的问题。然而,对镰刀菌属物种植物病理学中的三萜烯作用以及对通过糖基化解毒毒素的植物葡萄糖基转移酶的深入了解,为这一问题提供了一个可能的答案。由于葡萄糖基转移酶可能具有底物特异性,因此真菌产生的三萜烯结构的变化可能使其能够逃避植物酶的解毒。因此,逃避解毒带来的优势可能导致了三萜烯结构的多样化。要点: • TRI 基因通过多种过程进化:丧失、获得和功能变化。 • 一些 TRI 基因通过趋同进化获得了相同的功能。 • 其他一些 TRI 基因则通过不同的进化方式获得了不同的功能。 • 一些 TRI 基因是通过其他基因获得或功能多样化产生的。 • 植物葡萄糖基转移酶的底物特异性可能驱动三萜烯多样性。