Suppr超能文献

基于 CXC 趋化因子的结肠癌预后预测模型的构建。

Construction of a CXC Chemokine-Based Prediction Model for the Prognosis of Colon Cancer.

机构信息

The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China.

School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China.

出版信息

Biomed Res Int. 2020 Mar 30;2020:6107865. doi: 10.1155/2020/6107865. eCollection 2020.

Abstract

Colon cancer is the third most common cancer, with a high incidence and mortality. Construction of a specific and sensitive prediction model for prognosis is urgently needed. In this study, profiles of patients with colon cancer with clinical and gene expression data were downloaded from Gene Expression Omnibus and The Cancer Genome Atlas (TCGA). CXC chemokines in patients with colon cancer were investigated by differential expression gene analysis, overall survival analysis, receiver operating characteristic analysis, gene set enrichment analysis (GSEA), and weighted gene coexpression network analysis. CXCL1, CXCL2, CXCL3, and CXCL11 were upregulated in patients with colon cancer and significantly correlated with prognosis. The area under curve (AUC) of the multigene forecast model of CXCL1, CXCL11, CXCL2, and CXCL3 was 0.705 in the GSE41258 dataset and 0.624 in TCGA. The prediction model was constructed using the risk score of the multigene model and three clinicopathological risk factors and exhibited 92.6% and 91.8% accuracy in predicting 3-year and 5-year overall survival of patients with colon cancer, respectively. In addition, by GSEA, expression of CXCL1, CXCL11, CXCL2, and CXCL3 was correlated with several signaling pathways, including NOD-like receptor, oxidative phosphorylation, mTORC1, interferon-gamma response, and IL6/JAK/STAT3 pathways. Patients with colon cancer will benefit from this prediction model for prognosis, and this will pave the way to improve the survival rate and optimize treatment for colon cancer.

摘要

结肠癌是第三大常见癌症,发病率和死亡率都很高。因此,迫切需要构建一种特定且敏感的预后预测模型。本研究从基因表达数据库(GEO)和癌症基因组图谱(TCGA)中下载了结肠癌患者的临床和基因表达数据。通过差异表达基因分析、总生存期分析、受试者工作特征分析、基因集富集分析(GSEA)和加权基因共表达网络分析,研究了结肠癌患者的 CXC 趋化因子。结果发现,CXCL1、CXCL2、CXCL3 和 CXCL11 在结肠癌患者中上调,且与预后显著相关。在 GSE41258 数据集和 TCGA 中,CXCL1、CXCL11、CXCL2 和 CXCL3 的多基因预测模型的 AUC 分别为 0.705 和 0.624。该预测模型是使用多基因模型的风险评分和三个临床病理危险因素构建的,分别在预测结肠癌患者 3 年和 5 年总生存率时具有 92.6%和 91.8%的准确率。此外,通过 GSEA 分析,CXCL1、CXCL11、CXCL2 和 CXCL3 的表达与 NOD 样受体、氧化磷酸化、mTORC1、干扰素-γ反应和 IL6/JAK/STAT3 等信号通路相关。本研究构建的预测模型有望为结肠癌患者的预后提供帮助,为提高结肠癌患者的生存率和优化治疗方案铺平道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验