Mansour Toufik, Rastegar Reza, Roitershtein Alexander
Department of Mathematics, University of Haifa, 199 Abba Khoushy Ave, 3498838 Haifa, Israel.
Occidental Petroleum Corporation, Houston, TX 77046 and Departments of Mathematics and Engineering, University of Tulsa, OK 74104, USA - Adjunct Professor.
Eur J Comb. 2020 May;86. Epub 2020 Mar 21.
We revisit staircases for words and prove several exact as well as asymptotic results for longest left-most staircase subsequences and subwords and staircase separation number. The latter is defined as the number of consecutive maximal staircase subwords packed in a word. We study asymptotic properties of the sequence (), the number of -array words with separations over alphabet [] and show that for any ≥ 0, the growth sequence ( ,()) converges to a characterized limit, independent of . In addition, we study the asymptotic behavior of the random variable , the number of staircase separations in a random word in [] and obtain several limit theorems for the distribution of , including a law of large numbers, a central limit theorem, and the exact growth rate of the entropy of . Finally, we obtain similar results, including growth limits, for longest -staircase subwords and subsequences.
我们重新审视单词的阶梯结构,并证明了关于最长最左阶梯子序列、子单词和阶梯分离数的几个精确以及渐近结果。后者被定义为一个单词中连续最大阶梯子单词的数量。我们研究序列((s_n))的渐近性质,其中(s_n)是在字母表([k])上具有(n)个分离的(k) - 数组单词的数量,并表明对于任何(k\geq0),增长序列((n,s_n(k)))收敛到一个特征极限,与(k)无关。此外,我们研究随机变量(S_n)的渐近行为,(S_n)是在([k]^n)中的随机单词中的阶梯分离数,并获得了关于(S_n)分布的几个极限定理,包括大数定律、中心极限定理以及(S_n)熵的精确增长率。最后,我们针对最长(k) - 阶梯子单词和子序列获得了类似的结果,包括增长极限。