Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520.
Redwood Center for Theoretical Neuroscience, University of California Berkeley, Berkeley, California 94720-3198.
J Neurosci. 2020 Jun 24;40(26):5019-5032. doi: 10.1523/JNEUROSCI.2602-19.2020. Epub 2020 Apr 29.
Even though the lateral geniculate nucleus of the thalamus (LGN) is associated with form vision, that is not its sole role. Only the dorsal portion of LGN (dLGN) projects to V1. The ventral division (vLGN) connects subcortically, sending inhibitory projections to sensorimotor structures, including the superior colliculus (SC) and regions associated with certain behavioral states, such as fear (Monavarfeshani et al., 2017; Salay et al., 2018). We combined computational, physiological, and anatomical approaches to explore visual processing in vLGN of mice of both sexes, making comparisons to dLGN and SC for perspective. Compatible with past, qualitative descriptions, the receptive fields we quantified in vLGN were larger than those in dLGN, and most cells preferred bright versus dark stimuli (Harrington, 1997). Dendritic arbors spanned the length and/or width of vLGN and were often asymmetric, positioned to collect input from large but discrete territories. By contrast, arbors in dLGN are compact (Krahe et al., 2011). Consistent with spatially coarse receptive fields in vLGN, visually evoked changes in spike timing were less precise than for dLGN and SC. Notably, however, the membrane currents and spikes of some cells in vLGN displayed gamma oscillations whose phase and strength varied with stimulus pattern, as for SC (Stitt et al., 2013). Thus, vLGN can engage its targets using oscillation-based and conventional rate codes. Finally, dark shadows activate SC and drive escape responses, whereas vLGN prefers bright stimuli. Thus, one function of long-range inhibitory projections from vLGN might be to enable movement by releasing motor targets, such as SC, from suppression. Only the dorsal lateral geniculate nucleus (dLGN) connects to cortex to serve form vision; the ventral division (vLGN) projects subcortically to sensorimotor nuclei, including the superior colliculus (SC), via long-range inhibitory connections. Here, we asked how vLGN processes visual information, making comparisons with dLGN and SC for perspective. Cells in vLGN versus dLGN had wider dendritic arbors, larger receptive fields, and fired with lower temporal precision, consistent with a modulatory role. Like SC, but not dLGN, visual stimuli entrained oscillations in vLGN, perhaps reflecting shared strategies for visuomotor processing. Finally, most neurons in vLGN preferred bright shapes, whereas dark stimuli activate SC and drive escape behaviors, suggesting that vLGN enables rapid movement by releasing target motor structures from inhibition.
尽管丘脑外侧膝状体核(LGN)与形态视觉有关,但它并非唯一的作用。只有 LGN 的背侧部分(dLGN)投射到 V1。腹侧部分(vLGN)与皮质下连接,向感觉运动结构发出抑制性投射,包括上丘(SC)和与某些行为状态相关的区域,如恐惧(Monavarfeshani 等人,2017 年;Salay 等人,2018 年)。我们结合计算、生理和解剖学方法来探索雌雄小鼠 vLGN 的视觉处理,从 dLGN 和 SC 的角度进行比较。与过去的定性描述一致,我们在 vLGN 中量化的感受野大于 dLGN,并且大多数细胞更喜欢明亮的刺激而不是黑暗的刺激(Harrington,1997)。树突枝横跨 vLGN 的长度和/或宽度,并且经常不对称,以从大但离散的区域收集输入。相比之下,dLGN 中的树突枝紧凑(Krahe 等人,2011 年)。与 vLGN 中空间上粗糙的感受野一致,视觉诱发的尖峰时间变化不如 dLGN 和 SC 精确。值得注意的是,然而,一些 vLGN 细胞的膜电流和尖峰显示出伽马振荡,其相位和强度随刺激模式而变化,就像 SC 一样(Stitt 等人,2013 年)。因此,vLGN 可以使用基于振荡的和传统的速率码来与其靶标连接。最后,黑暗的阴影激活 SC 并驱动逃避反应,而 vLGN 更喜欢明亮的刺激。因此,来自 vLGN 的长程抑制性投射的一个功能可能是通过释放运动靶标(如 SC)来使运动成为可能。只有背外侧膝状体核(dLGN)连接到皮层以服务于形态视觉;腹侧部分(vLGN)通过长程抑制性连接投射到包括上丘(SC)在内的感觉运动核。在这里,我们询问 vLGN 如何处理视觉信息,并从 dLGN 和 SC 的角度进行比较。与 dLGN 相比,vLGN 中的细胞具有更宽的树突枝、更大的感受野和更低的时间精度,这与调节作用一致。与 SC 一样,但与 dLGN 不同,视觉刺激使 vLGN 中的振荡与视觉运动处理相关联。最后,vLGN 中的大多数神经元更喜欢明亮的形状,而黑暗的刺激则激活 SC 并驱动逃避行为,这表明 vLGN 通过抑制释放目标运动结构来实现快速运动。