Suppr超能文献

双眼竞争和融合的环模型。

Ring models of binocular rivalry and fusion.

机构信息

Integrated Program in Neuroscience, McGill University, 3801 Rue Université, Montréal, QC, H3A 2B4, Canada.

New York University - Courant Institute of Mathematical Science, 251 Mercer Street, New York, NY, 10012, USA.

出版信息

J Comput Neurosci. 2020 May;48(2):193-211. doi: 10.1007/s10827-020-00744-7. Epub 2020 May 3.

Abstract

When similar visual stimuli are presented binocularly to both eyes, one perceives a fused single image. However, when the two stimuli are distinct, one does not perceive a single image; instead, one perceives binocular rivalry. That is, one perceives one of the stimulated patterns for a few seconds, then the other for few seconds, and so on - with random transitions between the two percepts. Most theoretical studies focus on rivalry, with few considering the coexistence of fusion and rivalry. Here we develop three distinct computational neuronal network models which capture binocular rivalry with realistic stochastic properties, fusion, and the hysteretic transition between. Each is a conductance-based point neuron model, which is multi-layer with two ocular dominance columns (L & R) and with an idealized "ring" architecture where the orientation preference of each neuron labels its location on a ring. In each model, the primary mechanism initiating binocular rivalry is cross-column inhibition, with firing rate adaptation governing the temporal properties of the transitions between percepts. Under stimulation by similar visual patterns, each of three models uses its own mechanism to overcome cross-column inhibition, and thus to prevent rivalry and allow the fusion of similar images: The first model uses cross-column feedforward inhibition from the opposite eye to "shut off" the cross-column feedback inhibition; the second model "turns on" a second layer of monocular neurons as a parallel pathway to the binocular neurons, rivaling out of phase with the first layer, and together these two pathways represent fusion; and the third model uses cross-column excitation to overcome the cross-column inhibition and enable fusion. Thus, each of the idealized ring models depends upon a different mechanism for fusion that might emerge as an underlying mechanism present in real visual cortex.

摘要

当相似的视觉刺激同时呈现于双眼时,人会感知到融合的单一图像。然而,当两个刺激存在差异时,人不会感知到单一图像,而是感知到双眼竞争。也就是说,人会在几秒钟内感知到一种被刺激的模式,然后是另一种,以此类推——两种知觉之间随机转换。大多数理论研究都集中在竞争上,很少考虑融合的共存。在这里,我们开发了三个不同的计算神经元网络模型,它们捕捉到具有真实随机特性的双眼竞争、融合以及两者之间的滞后转变。每个模型都是基于电导率的点神经元模型,具有两层眼优势柱(L 和 R),以及理想化的“环”结构,其中每个神经元的方向偏好标记其在环上的位置。在每个模型中,引发双眼竞争的主要机制是柱间抑制,而神经元的发放率适应则控制着知觉之间转变的时间特性。在相似视觉模式的刺激下,三个模型中的每一个都使用自己的机制来克服柱间抑制,从而防止竞争并允许相似图像的融合:第一个模型使用来自对侧眼的柱间前馈抑制来“关闭”柱间反馈抑制;第二个模型“开启”第二层单眼神经元作为与双眼神经元的并行途径,与第一层相竞争,并且这两个途径共同代表融合;第三个模型使用柱间兴奋来克服柱间抑制并实现融合。因此,理想化环模型中的每一个都依赖于不同的融合机制,这些机制可能是真实视觉皮层中存在的潜在机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验