Suppr超能文献

空间分辨转录组——用于组织探索的新一代工具

Spatially Resolved Transcriptomes-Next Generation Tools for Tissue Exploration.

作者信息

Asp Michaela, Bergenstråhle Joseph, Lundeberg Joakim

机构信息

KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, Solna, 17165, Sweden.

出版信息

Bioessays. 2020 Oct;42(10):e1900221. doi: 10.1002/bies.201900221. Epub 2020 May 4.

Abstract

Recent advances in spatially resolved transcriptomics have greatly expanded the knowledge of complex multicellular biological systems. The field has quickly expanded in recent years, and several new technologies have been developed that all aim to combine gene expression data with spatial information. The vast array of methodologies displays fundamental differences in their approach to obtain this information, and thus, demonstrate method-specific advantages and shortcomings. While the field is moving forward at a rapid pace, there are still multiple challenges presented to be addressed, including sensitivity, labor extensiveness, tissue-type dependence, and limited capacity to obtain detailed single-cell information. No single method can currently address all these key parameters. In this review, available spatial transcriptomics methods are described and their applications as well as their strengths and weaknesses are discussed. Future developments are explored and where the field is heading to is deliberated upon.

摘要

空间分辨转录组学的最新进展极大地扩展了我们对复杂多细胞生物系统的认识。近年来,该领域迅速发展,已开发出多种新技术,这些技术都旨在将基因表达数据与空间信息相结合。大量的方法在获取这些信息的方式上存在根本差异,因此展现出方法特定的优缺点。尽管该领域正在快速发展,但仍有多个挑战有待解决,包括灵敏度、劳动强度大、组织类型依赖性以及获取详细单细胞信息的能力有限。目前没有一种方法能够解决所有这些关键参数。在这篇综述中,将描述现有的空间转录组学方法,并讨论它们的应用以及优缺点。还将探索未来的发展方向,并思考该领域的发展趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验