Wu Shu-Chi, Ai Yuanfei, Chen Yu-Ze, Wang Kuangye, Yang Tzu-Yi, Liao Hsiang-Ju, Su Teng-Yu, Tang Shin-Yi, Chen Chia-Wei, Wu Ding Chou, Wang Yi-Chung, Manikandan Arumugam, Shih Yu-Chuan, Lee Ling, Chueh Yu-Lun
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, ROC.
Songshan Lake Materials Laboratory, Guangdong 523808, China.
ACS Appl Mater Interfaces. 2020 Jun 17;12(24):27064-27073. doi: 10.1021/acsami.0c03882. Epub 2020 Jun 7.
Aluminum-sulfur batteries (ASBs) have attracted substantial interest due to their high theoretical specific energy density, low cost, and environmental friendliness, while the traditional sulfur cathode and ionic liquid have very fast capacity decay, limiting cycling performance because of the sluggishly electrochemical reaction and side reactions with the electrolyte. Herein, we demonstrate, for the first time, excellent rechargeable aluminum-selenium batteries (ASeBs) using a new deep eutectic solvent, thiourea-AlCl, as an electrolyte and Se nanowires grown directly on a flexible carbon cloth substrate (Se NWs@CC) by a low-temperature selenization process as a cathode. Selenium (Se) is a chemical analogue of sulfur with higher electronic conductivity and lower ionization potential that can improve the battery kinetics on the sluggishly electrochemical reaction and the reduction of the polarization where the thiourea-AlCl electrolyte can stabilize the side reaction during the reversible conversion reaction of Al-Se alloying processes during the charge-discharge process, yielding a high specific capacity of 260 mAh g at 50 mA g and a long cycling life of 100 times with a high Coulombic efficiency of nearly 93% at 100 mA g. The working mechanism based on the reversible conversion reaction of the Al-Se alloying processes, confirmed by the ex situ Raman, XRD, and XPS measurements, was proposed. This work provides new insights into the development of rechargeable aluminum-chalcogenide (S, Se, and Te) batteries.
铝硫电池(ASBs)因其高理论比能量密度、低成本和环境友好性而备受关注,然而传统的硫正极和离子液体存在非常快速的容量衰减问题,由于电化学反应缓慢以及与电解质的副反应,限制了其循环性能。在此,我们首次展示了一种优异的可充电铝硒电池(ASeBs),使用新型低共熔溶剂硫脲 - 氯化铝作为电解质,并通过低温硒化工艺在柔性碳布基底上直接生长的硒纳米线(Se NWs@CC)作为正极。硒(Se)是硫的化学类似物,具有更高的电子导电性和更低的电离势,这可以改善电池在缓慢电化学反应中的动力学,并减少极化现象,其中硫脲 - 氯化铝电解质可以在充放电过程中铝 - 硒合金化过程的可逆转化反应期间稳定副反应,在50 mA g的电流密度下产生260 mAh g的高比容量,在100 mA g的电流密度下具有100次的长循环寿命和近93%的高库仑效率。通过非原位拉曼光谱、X射线衍射和X射线光电子能谱测量证实了基于铝 - 硒合金化过程可逆转化反应的工作机制。这项工作为可充电铝硫属化物(S、Se和Te)电池的发展提供了新的见解。