Suppr超能文献

通过机械驱动和电控制实现的具有原子尺寸尖端和可调间隙的共振光学天线。

Resonant Optical Antennas with Atomic-Sized Tips and Tunable Gaps Achieved by Mechanical Actuation and Electrical Control.

作者信息

Gruber Cynthia M, Herrmann Lars, Bellido Edson P, Dössegger Janine, Olziersky Antonis, Drechsler Ute, Puebla-Hellmann Gabriel, Botton Gianluigi A, Novotny Lukas, Lörtscher Emanuel

机构信息

IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland.

ETH Zürich, Photonics Laboratory, Hönggerbergring 64, CH-8093 Zürich, Switzerland.

出版信息

Nano Lett. 2020 Jun 10;20(6):4346-4353. doi: 10.1021/acs.nanolett.0c01072. Epub 2020 May 12.

Abstract

Enhanced electromagnetic fields in nanometer gaps of plasmonic structures increase the optical interaction with matter, including Raman scattering and optical absorption. Quantum electron tunneling across sub-1 nm gaps, however, lowers these effects again. Understanding these phenomena requires controlled variation of gap sizes. Mechanically actuated plasmonic antennas enable repeatable tuning of gap sizes from the weak-coupling over the quantum-electron-tunneling to the direct-electrical-contact regime. Gap sizes are controlled electrically via leads that only weakly disturb plasmonic modes. Conductance signals show a near-continuous transition from electron tunneling to metallic contact. As the antenna's absorption cross-section is reduced, thermal expansion effects are negligible, in contrast to conventional break-junctions. Optical scattering spectra reveal first continuous red shifts for decreasing gap sizes and then blue shifts below gaps of 0.3 nm. The approach provides pathways to study opto- and electromolecular processes at the limit of plasmonic sensing.

摘要

等离子体结构纳米间隙中增强的电磁场会增加与物质的光学相互作用,包括拉曼散射和光吸收。然而,跨越亚1纳米间隙的量子电子隧穿会再次降低这些效应。要理解这些现象,需要控制间隙尺寸的变化。机械驱动的等离子体天线能够实现间隙尺寸从弱耦合到量子电子隧穿再到直接电接触 regime 的可重复调谐。间隙尺寸通过仅对等离子体模式产生微弱干扰的引线进行电控制。电导信号显示出从电子隧穿到金属接触的近乎连续的转变。与传统的断接结相比,由于天线的吸收截面减小,热膨胀效应可以忽略不计。光学散射光谱显示,随着间隙尺寸减小,首先出现连续的红移,然后在间隙小于0.3纳米时出现蓝移。该方法为在等离子体传感极限下研究光和电分子过程提供了途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验