Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
Computational Science, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
Forensic Sci Int. 2020 Jul;312:110299. doi: 10.1016/j.forsciint.2020.110299. Epub 2020 Apr 23.
When stature estimation of incomplete skeletal remains is necessary, researchers select an estimation equation which will produce the most accurate estimates. The purpose of this study is to propose that, given prior information of a target sample, the Bayes factor can be a useful tool to quantitatively evaluate and compare performance of multiple equations in this regard. This study also explores the best-performing equations to reconstruct statures of Korean War casualties with a demonstration of equation comparisons by the Bayes factor. Thirty-three sets of stature estimates were generated using different equations based on the osteometric data of the Korean War casualties. The distribution of each set was compared to that of the population (i.e., Korean servicemen during the Korean War) using the Bayes factors and posterior probabilities generated by the R codes in the LearnBayes package. A higher Bayes factor indicates a closer similarity between the two distributions under comparison. The equation with the highest Bayes factor in this study was Choi et al.'s (1997) humerus equation (bf=9.84), followed by the femur equation of the same authors (bf=5.3). The Bayesian approach has advantages over the traditional frequentist approach primarily based on the p-value. Particularly, the Bayes factor can provide practical interpretations on the models under comparison, which allows for a quantitative prioritization of different models. Researchers can obtain more accurate stature estimates of a target sample by using the equation of the highest Bayes factor.
当需要对不完整骨骼遗骸进行身高估计时,研究人员会选择最能产生准确估计的估计方程。本研究旨在提出,在具有目标样本的先验信息的情况下,贝叶斯因子可以成为一种有用的工具,用于定量评估和比较多种方程在这方面的性能。本研究还探讨了最佳表现的方程,以重建朝鲜战争伤亡人员的身高,并通过贝叶斯因子展示了方程比较。根据朝鲜战争伤亡人员的骨骼测量数据,使用不同的方程生成了 33 组身高估计值。使用贝叶斯因子和 LearnBayes 包中的 R 代码生成的后验概率,将每个集合的分布与人群(即朝鲜战争期间的韩国军人)的分布进行比较。较高的贝叶斯因子表示两个比较分布之间的相似性更高。本研究中贝叶斯因子最高的方程是 Choi 等人(1997 年)的肱骨方程(bf=9.84),其次是同一作者的股骨方程(bf=5.3)。贝叶斯方法相对于基于 p 值的传统频率方法具有优势。特别是,贝叶斯因子可以为比较模型提供实际的解释,从而可以对不同模型进行定量优先排序。研究人员可以通过使用贝叶斯因子最高的方程来获得目标样本更准确的身高估计值。