Suppr超能文献

葡萄糖和谷氨酰胺衍生的碳进入柠檬酸循环支持 HIV-1 在 CD4 T 细胞中的早期感染步骤。

Entry of glucose- and glutamine-derived carbons into the citric acid cycle supports early steps of HIV-1 infection in CD4 T cells.

机构信息

Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.

Cancer Research UK, Beatson Institute, Glasgow, UK.

出版信息

Nat Metab. 2019 Jul;1(7):717-730. doi: 10.1038/s42255-019-0084-1. Epub 2019 Jul 12.

Abstract

The susceptibility of CD4 T cells to human immunodeficiency virus 1 (HIV-1) infection is regulated by glucose and glutamine metabolism, but the relative contributions of these nutrients to infection are not known. Here we show that glutaminolysis is the major pathway fuelling the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in T-cell receptor-stimulated naïve, as well as memory CD4, subsets and is required for optimal HIV-1 infection. Under conditions of attenuated glutaminolysis, the α-ketoglutarate (α-KG) TCA rescues early steps in infection; exogenous α-KG promotes HIV-1 reverse transcription, rendering both naïve and memory cells more sensitive to infection. Blocking the glycolytic flux of pyruvate to lactate results in altered glucose carbon allocation to TCA and pentose phosphate pathway intermediates, an increase in OXPHOS and augmented HIV-1 reverse transcription. Moreover, HIV-1 infection is significantly higher in CD4 T cells selected on the basis of high mitochondrial biomass and OXPHOS activity. Therefore, the OXPHOS/aerobic glycolysis balance is a major regulator of HIV-1 infection in CD4 T lymphocytes.

摘要

CD4 T 细胞对人类免疫缺陷病毒 1(HIV-1)感染的易感性受葡萄糖和谷氨酰胺代谢调节,但这些营养物质对感染的相对贡献尚不清楚。在这里,我们表明,谷氨酰胺分解代谢是 T 细胞受体刺激的幼稚和记忆 CD4 亚群三羧酸(TCA)循环和氧化磷酸化(OXPHOS)的主要途径,是最佳 HIV-1 感染所必需的。在谷氨酰胺分解代谢减弱的条件下,α-酮戊二酸(α-KG)TCA 挽救了感染的早期步骤;外源性 α-KG 促进 HIV-1 逆转录,使幼稚和记忆细胞对感染更敏感。阻断丙酮酸向乳酸的糖酵解通量会导致 TCA 和戊糖磷酸途径中间产物的葡萄糖碳分配发生改变,OXPHOS 增加,HIV-1 逆转录增强。此外,基于线粒体生物量和 OXPHOS 活性高而选择的 CD4 T 细胞中,HIV-1 感染显著增加。因此,OXPHOS/有氧糖酵解平衡是 CD4 T 淋巴细胞中 HIV-1 感染的主要调节剂。

相似文献

3
Evidence for Altered Glutamine Metabolism in Human Immunodeficiency Virus Type 1 Infected Primary Human CD4 T Cells.
AIDS Res Hum Retroviruses. 2017 Dec;33(12):1236-1247. doi: 10.1089/AID.2017.0165. Epub 2017 Oct 4.
4
Oxidation of glucose carbon entering the TCA cycle is reduced by glutamine in small intestine epithelial cells.
Am J Physiol. 1995 Jun;268(6 Pt 1):G879-88. doi: 10.1152/ajpgi.1995.268.6.G879.
6
Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50. doi: 10.1073/pnas.0709747104. Epub 2007 Nov 21.
7
Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells.
J Cell Physiol. 1996 Jan;166(1):152-69. doi: 10.1002/(SICI)1097-4652(199601)166:1<152::AID-JCP18>3.0.CO;2-H.
8
Bonded Cumomer Analysis of Human Melanoma Metabolism Monitored by 13C NMR Spectroscopy of Perfused Tumor Cells.
J Biol Chem. 2016 Mar 4;291(10):5157-71. doi: 10.1074/jbc.M115.701862. Epub 2015 Dec 24.

引用本文的文献

1
Pantothenate kinase 4 controls lipid synthesis for T-cell proliferation by modulating coenzyme A and glutaminolysis.
Signal Transduct Target Ther. 2025 Sep 18;10(1):302. doi: 10.1038/s41392-025-02385-7.
4
Glutamine and cancer: metabolism, immune microenvironment, and therapeutic targets.
Cell Commun Signal. 2025 Jan 24;23(1):45. doi: 10.1186/s12964-024-02018-6.
6
Mitochondrial Dysfunction and Metabolic Disturbances Induced by Viral Infections.
Cells. 2024 Oct 29;13(21):1789. doi: 10.3390/cells13211789.
7
Soluble markers of viral rebound and post-treatment HIV control.
Curr Opin HIV AIDS. 2025 Jan 1;20(1):61-69. doi: 10.1097/COH.0000000000000889. Epub 2024 Sep 25.
8
Metabolic regulation of the immune system in health and diseases: mechanisms and interventions.
Signal Transduct Target Ther. 2024 Oct 9;9(1):268. doi: 10.1038/s41392-024-01954-6.
9
The impact of sex on HIV immunopathogenesis and therapeutic interventions.
J Clin Invest. 2024 Sep 17;134(18):e180075. doi: 10.1172/JCI180075.
10
Metformin facilitates viral reservoir reactivation and their recognition by anti-HIV-1 envelope antibodies.
iScience. 2024 Aug 5;27(9):110670. doi: 10.1016/j.isci.2024.110670. eCollection 2024 Sep 20.

本文引用的文献

1
Cellular Metabolism Is a Major Determinant of HIV-1 Reservoir Seeding in CD4 T Cells and Offers an Opportunity to Tackle Infection.
Cell Metab. 2019 Mar 5;29(3):611-626.e5. doi: 10.1016/j.cmet.2018.11.015. Epub 2018 Dec 20.
3
Metabolic orchestration of T lineage differentiation and function.
FEBS Lett. 2017 Oct;591(19):3104-3118. doi: 10.1002/1873-3468.12849. Epub 2017 Oct 6.
4
Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection.
FEBS Lett. 2017 Oct;591(20):3319-3332. doi: 10.1002/1873-3468.12843. Epub 2017 Oct 11.
5
Evidence for Altered Glutamine Metabolism in Human Immunodeficiency Virus Type 1 Infected Primary Human CD4 T Cells.
AIDS Res Hum Retroviruses. 2017 Dec;33(12):1236-1247. doi: 10.1089/AID.2017.0165. Epub 2017 Oct 4.
6
Metabolic Instruction of Immunity.
Cell. 2017 May 4;169(4):570-586. doi: 10.1016/j.cell.2017.04.004.
8
Inhibiting Oxidative Phosphorylation In Vivo Restrains Th17 Effector Responses and Ameliorates Murine Colitis.
J Immunol. 2017 Apr 1;198(7):2735-2746. doi: 10.4049/jimmunol.1600810. Epub 2017 Feb 27.
9
Metabolic pathways in T cell activation and lineage differentiation.
Semin Immunol. 2016 Oct;28(5):514-524. doi: 10.1016/j.smim.2016.10.009. Epub 2016 Nov 4.
10
Mitochondrial Biogenesis and Proteome Remodeling Promote One-Carbon Metabolism for T Cell Activation.
Cell Metab. 2016 Jul 12;24(1):104-17. doi: 10.1016/j.cmet.2016.06.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验