School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport, QLD, 4222, Australia.
Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia.
Tissue Eng Regen Med. 2020 Jun;17(3):253-269. doi: 10.1007/s13770-020-00254-8. Epub 2020 May 10.
Glaucoma, a characteristic type of optic nerve degeneration in the posterior pole of the eye, is a common cause of irreversible vision loss and the second leading cause of blindness worldwide. As an optic neuropathy, glaucoma is identified by increasing degeneration of retinal ganglion cells (RGCs), with consequential vision loss. Current treatments only postpone the development of retinal degeneration, and there are as yet no treatments available for this disability. Recent studies have shown that replacing lost or damaged RGCs with healthy RGCs or RGC precursors, supported by appropriately designed bio-material scaffolds, could facilitate the development and enhancement of connections to ganglion cells and optic nerve axons. The consequence may be an improved retinal regeneration. This technique could also offer the possibility for retinal regeneration in treating other forms of optic nerve ailments through RGC replacement.
In this brief review, we describe the innovations and recent developments in retinal regenerative medicine such as retinal organoids and gene therapy which are specific to glaucoma treatment and focus on the selection of appropriate bio-engineering principles, biomaterials and cell therapies that are presently employed in this growing research area.
Identification of optimal sources of cells, improving cell survival, functional integration upon transplantation, and developing techniques to deliver cells into the retinal space without provoking immune responses are the main challenges in retinal cell replacement therapies.
The restoration of visual function in glaucoma patients by the RGC replacement therapies requires appropriate protocols and biotechnology methods. Tissue-engineered scaffolds, the generation of retinal organoids, and gene therapy may help to overcome some of the challenges in the generation of clinically safe RGCs.
青光眼是一种特征性的后极视神经退行性疾病,是全球范围内不可逆转视力丧失的主要原因之一,也是第二大致盲原因。作为一种视神经病变,青光眼的特征是视网膜神经节细胞(RGC)逐渐退化,导致视力下降。目前的治疗方法只能延缓视网膜变性的发展,而对于这种残疾还没有有效的治疗方法。最近的研究表明,通过适当设计的生物材料支架,用健康的 RGC 或 RGC 前体细胞替代丢失或受损的 RGC,可以促进与节细胞和视神经轴突的连接的发育和增强。其结果可能是视网膜再生得到改善。通过 RGC 替代,这种技术也为治疗其他形式的视神经疾病提供了视网膜再生的可能性。
在这篇简要综述中,我们描述了视网膜再生医学的创新和最新进展,如视网膜类器官和基因治疗,这些方法专门针对青光眼治疗,并侧重于选择合适的生物工程原理、生物材料和细胞疗法,这些方法目前在这个不断发展的研究领域中得到了应用。
确定最佳的细胞来源、提高细胞存活率、移植后的功能整合以及开发将细胞递送到视网膜空间而不引起免疫反应的技术,是视网膜细胞替代治疗中的主要挑战。
通过 RGC 替代治疗恢复青光眼患者的视觉功能,需要适当的方案和生物技术方法。组织工程支架、视网膜类器官的生成和基因治疗可能有助于克服在生成临床上安全的 RGC 方面的一些挑战。