Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
Endocr Rev. 2020 Oct 1;41(5):707-32. doi: 10.1210/endrev/bnaa014.
All biological processes, living organisms, and ecosystems have evolved with the Sun that confers a 24-hour periodicity to life on Earth. Circadian rhythms arose from evolutionary needs to maximize daily organismal fitness by enabling organisms to mount anticipatory and adaptive responses to recurrent light-dark cycles and associated environmental changes. The clock is a conserved feature in nearly all forms of life, ranging from prokaryotes to virtually every cell of multicellular eukaryotes. The mammalian clock comprises transcription factors interlocked in negative feedback loops, which generate circadian expression of genes that coordinate rhythmic physiology. In this review, we highlight previous and recent studies that have advanced our understanding of the transcriptional architecture of the mammalian clock, with a specific focus on epigenetic mechanisms, transcriptomics, and 3-dimensional chromatin architecture. In addition, we discuss reciprocal ways in which the clock and metabolism regulate each other to generate metabolic rhythms. We also highlight implications of circadian biology in human health, ranging from genetic and environment disruptions of the clock to novel therapeutic opportunities for circadian medicine. Finally, we explore remaining fundamental questions and future challenges to advancing the field forward.
所有的生物过程、生物和生态系统都是伴随着太阳而进化的,太阳赋予了地球上生命 24 小时的周期性。昼夜节律是为了使生物体能够对反复出现的光-暗周期和相关的环境变化做出预期和适应性反应,从而最大限度地提高生物体的日常适应能力而产生的。生物钟是几乎所有形式的生命的一个保守特征,从原核生物到真核生物的几乎每一个细胞都有生物钟。哺乳动物的生物钟由相互作用的转录因子组成负反馈回路,这些转录因子产生协调节律生理的基因的昼夜表达。在这篇综述中,我们强调了以前和最近的研究,这些研究增进了我们对哺乳动物生物钟的转录结构的理解,特别关注了表观遗传机制、转录组学和 3 维染色质结构。此外,我们还讨论了生物钟和新陈代谢相互调节以产生代谢节律的相互作用方式。我们还强调了生物钟生物学在人类健康中的意义,范围从生物钟的遗传和环境破坏到生物钟医学的新治疗机会。最后,我们探讨了推进该领域的未解决的基本问题和未来挑战。