Suppr超能文献

用于连续和二元结局的单阶段个体参与者数据荟萃分析模型:治疗编码选项和估计方法的比较

One-stage individual participant data meta-analysis models for continuous and binary outcomes: Comparison of treatment coding options and estimation methods.

作者信息

Riley Richard D, Legha Amardeep, Jackson Dan, Morris Tim P, Ensor Joie, Snell Kym I E, White Ian R, Burke Danielle L

机构信息

Centre for Prognosis Research, School of Primary, Community and Social Care, Keele University, Keele, UK.

Statistical Innovation Group, Advanced Analytics Centre, AstraZeneca, Cambridge, UK.

出版信息

Stat Med. 2020 Aug 30;39(19):2536-2555. doi: 10.1002/sim.8555. Epub 2020 May 11.

Abstract

A one-stage individual participant data (IPD) meta-analysis synthesizes IPD from multiple studies using a general or generalized linear mixed model. This produces summary results (eg, about treatment effect) in a single step, whilst accounting for clustering of participants within studies (via a stratified study intercept, or random study intercepts) and between-study heterogeneity (via random treatment effects). We use simulation to evaluate the performance of restricted maximum likelihood (REML) and maximum likelihood (ML) estimation of one-stage IPD meta-analysis models for synthesizing randomized trials with continuous or binary outcomes. Three key findings are identified. First, for ML or REML estimation of stratified intercept or random intercepts models, a t-distribution based approach generally improves coverage of confidence intervals for the summary treatment effect, compared with a z-based approach. Second, when using ML estimation of a one-stage model with a stratified intercept, the treatment variable should be coded using "study-specific centering" (ie, 1/0 minus the study-specific proportion of participants in the treatment group), as this reduces the bias in the between-study variance estimate (compared with 1/0 and other coding options). Third, REML estimation reduces downward bias in between-study variance estimates compared with ML estimation, and does not depend on the treatment variable coding; for binary outcomes, this requires REML estimation of the pseudo-likelihood, although this may not be stable in some situations (eg, when data are sparse). Two applied examples are used to illustrate the findings.

摘要

单阶段个体参与者数据(IPD)荟萃分析使用一般或广义线性混合模型综合来自多项研究的IPD。这在单个步骤中产生汇总结果(例如,关于治疗效果),同时考虑研究内参与者的聚类(通过分层研究截距或随机研究截距)和研究间异质性(通过随机治疗效应)。我们使用模拟来评估用于综合具有连续或二元结局的随机试验的单阶段IPD荟萃分析模型的限制最大似然(REML)和最大似然(ML)估计的性能。确定了三个关键发现。首先,对于分层截距或随机截距模型的ML或REML估计,与基于z的方法相比,基于t分布的方法通常会提高汇总治疗效果置信区间的覆盖率。其次,当使用具有分层截距的单阶段模型的ML估计时,治疗变量应使用“特定研究中心化”进行编码(即,1/0减去治疗组中参与者的特定研究比例),因为这会减少研究间方差估计中的偏差(与编码为1/0和其他编码选项相比)。第三,与ML估计相比,REML估计减少了研究间方差估计中的向下偏差,并且不依赖于治疗变量编码;对于二元结局,这需要对伪似然进行REML估计,尽管在某些情况下(例如,当数据稀疏时)这可能不稳定。使用两个应用示例来说明这些发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验