Shin Jae Cheol, Kwon Sung Min, Kang Jingu, Jeon Seong Pil, Heo Jae-Sang, Kim Yong-Hoon, Cho Sung Woon, Park Sung Kyu
School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut 06030, United States.
ACS Appl Mater Interfaces. 2020 Jun 3;12(22):25000-25010. doi: 10.1021/acsami.0c04401. Epub 2020 May 22.
As an alternative strategy for conventional high-temperature crystallization of metal oxide (MO) channel layers, the catalytic metal-accelerated crystallization (CMAC) process using a metal seed layer is demonstrated for low-temperature crystallization of solution-processed MO semiconductors. In the CMAC process, the catalytic metal layer plays the role of seed sites for initiating and accelerating the crystallization of amorphous MO films. Generally, the solution-processed crystalline-TiO (c-TiO) films required high-temperature crystallization conditions (≥500-600 °C), showing low electrical performance with a high defect density. In contrast, the suggested CMAC process could effectively lower crystallization temperature of the a-TiO films, enabling high-quality c-TiO films with well-aligned anatase grains and low-defect density. The various crystalline catalytic layers were deposited over the earth-abundant n-type amorphous titanium oxide (a-TiO) films. Also, then, the CMAC process was performed for facile low-temperature translation of solution-processed a-TiO to a highly crystallized state. In particular, the Al-CMAC process using the crystalline thin-aluminum (Al) catalytic metal seed layer facilitates low-temperature (≥300 °C) crystallization of the solution-processed a-TiO films and the fabrication of high-performance solution-processed c-TiO thin-film transistors with superior field-effect mobility, good on/off switching behavior, and improved operational stability.
作为金属氧化物(MO)沟道层传统高温结晶的替代策略,本文展示了一种使用金属籽晶层的催化金属加速结晶(CMAC)工艺,用于溶液处理的MO半导体的低温结晶。在CMAC工艺中,催化金属层起到引发和加速非晶MO薄膜结晶的籽晶位点的作用。通常,溶液处理的结晶TiO(c-TiO)薄膜需要高温结晶条件(≥500-600°C),其电性能较低且缺陷密度高。相比之下,所提出的CMAC工艺可以有效地降低a-TiO薄膜的结晶温度,从而获得具有排列良好的锐钛矿晶粒和低缺陷密度的高质量c-TiO薄膜。在储量丰富的n型非晶钛氧化物(a-TiO)薄膜上沉积了各种结晶催化层。然后,通过CMAC工艺将溶液处理的a-TiO轻松低温转变为高度结晶状态。特别是,使用结晶薄铝(Al)催化金属籽晶层的Al-CMAC工艺有助于溶液处理的a-TiO薄膜在低温(≥300°C)下结晶,并制造出具有优异场效应迁移率、良好的开/关切换行为和改善的操作稳定性的高性能溶液处理c-TiO薄膜晶体管。