Ramírez Julian, Urbina Armando D, Kleinschmidt Andrew T, Finn Mickey, Edmunds Samuel J, Esparza Guillermo L, Lipomi Darren J
Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA.
Nanoscale. 2020 May 28;12(20):11209-11221. doi: 10.1039/d0nr02270e.
The purpose of this work is to clarify the mechanism of piezoresistance in a class of ultra-sensitive strain gauges based on metallic films on 2D substrates ("2D/M" films). The metals used are gold or palladium deposited as ultrathin films (≤16 nm). These films transition from a regime of subcontiguous growth to a percolated morphology with increasing nominal thickness. The 2D substrates are either single-layer graphene or hexagonal boron nitride (hBN). By using either a conductor (graphene) or an insulator (hBN), it is possible to de-couple the relative contributions of the metal and the 2D substrate from the overall piezoresistance of the composite structure. Here, we use a combination of measurements including electron microscopy, automated image analysis, temperature-dependent conductivity, and measurements of gauge factor of the films as they are bent over a 1 μm step edge (0.0001% or 1 ppm). Our observations are enumerated as follows: (1) of the four permutations of metal and 2D substrate, all combinations except hBN/Au are able to resolve 1 ppm strain (considered extraordinary for strain gauges) at some threshold thickness of metal; (2) for non-contiguous (i.e., unpercolated) films of metal on hBN, changes in resistance for these small step strains cannot be detected; (3) for percolated films on hBN, changes in resistance upon strain can be resolved only for palladium and not for gold; (4) graphene does not exhibit detectable changes in resistance when subjected to step strains of either 1 or 10 ppm, but does so upon the deposition of any amount of gold or palladium, even for nominal thicknesses below the threshold for percolation. Our observations reveal unexpected complexity in the properties of these simple composite materials, and ways in which these materials might be combined to exhibit even greater sensitivity.
这项工作的目的是阐明一类基于二维衬底上金属薄膜(“二维/金属”薄膜)的超灵敏应变片的压阻机制。所使用的金属是沉积为超薄薄膜(≤16纳米)的金或钯。随着标称厚度的增加,这些薄膜从亚连续生长状态转变为渗流形态。二维衬底为单层石墨烯或六方氮化硼(hBN)。通过使用导体(石墨烯)或绝缘体(hBN),可以将金属和二维衬底对复合结构总压阻的相对贡献解耦。在这里,我们结合了多种测量方法,包括电子显微镜、自动图像分析、温度依赖性电导率以及测量薄膜在1微米台阶边缘弯曲时(0.0001%或1 ppm)的应变系数。我们的观察结果如下:(1)在金属和二维衬底的四种排列组合中,除了hBN/金之外,所有组合在金属的某个阈值厚度下都能够分辨1 ppm的应变(这对应变片来说是非常出色的);(2)对于hBN上的非连续(即未渗流)金属薄膜,无法检测到这些小台阶应变引起的电阻变化;(3)对于hBN上的渗流薄膜,只有钯薄膜在应变时的电阻变化可以分辨,而金薄膜则不行;(4)石墨烯在受到1 ppm或10 ppm的台阶应变时,电阻没有可检测到的变化,但在沉积任何数量的金或钯后,即使标称厚度低于渗流阈值,电阻也会发生变化。我们的观察结果揭示了这些简单复合材料特性中意想不到的复杂性,以及将这些材料组合起来以展现更高灵敏度的方法。