Fayn Jocelyne, Rubel Paul
SFR Santé Lyon-Est: eTechSanté, INSERM US7, Université de Lyon, Lyon 69372, France.
Int J Telemed Appl. 2020 Jan 27;2020:9175673. doi: 10.1155/2020/9175673. eCollection 2020.
False alarm reduction is an important challenge in self-care, whereas one of the most important false alarm causes in the cardiology domain is electrodes misplacements in ECG recordings, the main investigations to perform for early and pervasive detection of cardiovascular diseases. In this context, we present and assess a new method for electrode reversals identification for Mason-Likar based 3D ECG recording systems which are especially convenient to use in self-care and allow to achieve, as previously reported, high computerized ischemia detection accuracy.
We mathematically simulate the effect of the six pairwise reversals of the LA, RA, LL, and C2 electrodes on the three ECG leads I, II, and V2. Our approach then consists in performing serial comparisons of the newly recorded 3D ECG and of the six derived ECGs simulating an electrode reversal with a standard, 12-lead reference ECG by means of the CAVIAR software. We further use a scoring method to compare these analysis results and then apply a decision tree model to extract the most relevant measurements in a learning set of 121 patients recorded in ICU.
The comparison of the seven sets of serial analysis results from the learning set resulted in the determination of a composite criteria involving four measurements of spatial orientation changes of QRS and T and providing a reversal identification accuracy of 100%. Almost the same results, with 99.99% of sensitivity and 100% of specificity, were obtained in two test sets from 90 patients, composed of 2098 and 2036 representative ECG beats respectively recorded during PTCA balloon inflation, a procedure which mimics ischemia, and before PTCA for control.
Personalized automatic detection of ECG electrode cable interchanges can reach almost the maximal accuracy of 100% in self-care, and can be performed in almost real time.
减少误报是自我护理中的一项重要挑战,而在心脏病学领域,最重要的误报原因之一是心电图记录中电极位置错误,心电图记录是早期全面检测心血管疾病的主要检查手段。在此背景下,我们提出并评估一种用于基于梅森-利卡尔(Mason-Likar)的三维心电图记录系统的电极反转识别新方法,这种系统在自我护理中使用特别方便,并且如先前报道的那样,能够实现较高的计算机化缺血检测准确率。
我们通过数学模拟左心房(LA)、右心房(RA)、左下肢(LL)和C2电极的六对反转对三条心电图导联I、II和V2的影响。然后,我们的方法是使用CAVIAR软件,将新记录的三维心电图与模拟电极反转的六条衍生心电图与标准的12导联参考心电图进行系列比较。我们进一步使用评分方法比较这些分析结果,然后应用决策树模型从重症监护病房(ICU)记录的121名患者的学习集中提取最相关的测量值。
对学习集的七组系列分析结果进行比较,确定了一个综合标准,该标准涉及QRS波群和T波空间方向变化的四项测量,反转识别准确率为100%。在来自90名患者的两个测试集中也获得了几乎相同的结果,灵敏度为99.99%,特异性为100%,这两个测试集分别由2098次和2036次代表性心电图搏动组成,分别记录于经皮冠状动脉腔内血管成形术(PTCA)球囊扩张期间(该过程模拟缺血)以及PTCA之前用于对照。
在自我护理中,个性化自动检测心电图电极电缆互换的准确率几乎可达100%的最大值,并且几乎可以实时进行。