Suppr超能文献

利用光遗传学转录控制在斑马鱼中靶向细胞消融。

Targeted cell ablation in zebrafish using optogenetic transcriptional control.

机构信息

Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA

Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Development. 2020 Jun 17;147(12):dev183640. doi: 10.1242/dev.183640.

Abstract

Cell ablation is a powerful method for elucidating the contributions of individual cell populations to embryonic development and tissue regeneration. Targeted cell loss in whole organisms has been typically achieved through expression of a cytotoxic or prodrug-activating gene product in the cell type of interest. This approach depends on the availability of tissue-specific promoters, and it does not allow further spatial selectivity within the promoter-defined region(s). To address this limitation, we have used the light-inducible GAVPO transactivator in combination with two genetically encoded cell-ablation technologies: the nitroreductase/nitrofuran system and a cytotoxic variant of the M2 ion channel. Our studies establish ablative methods that provide the tissue specificity afforded by regulatory elements and the conditionality of optogenetics. Our studies also demonstrate differences between the nitroreductase and M2 systems that influence their efficacies for specific applications. Using this integrative approach, we have ablated cells in zebrafish embryos with both spatial and temporal control.

摘要

细胞消融是阐明单个细胞群体对胚胎发育和组织再生贡献的有力方法。在整个生物体中靶向细胞缺失通常通过在感兴趣的细胞类型中表达细胞毒性或前药激活基因产物来实现。这种方法取决于组织特异性启动子的可用性,并且不允许在启动子定义的区域内进一步进行空间选择性。为了解决这个限制,我们使用了光诱导的 GAVPO 转录激活子与两种基因编码的细胞消融技术结合使用:硝基还原酶/硝基呋喃系统和 M2 离子通道的细胞毒性变体。我们的研究建立了消融方法,这些方法提供了调控元件所赋予的组织特异性和光遗传学的条件性。我们的研究还表明,硝基还原酶和 M2 系统之间存在差异,这会影响它们在特定应用中的功效。使用这种综合方法,我们已经在斑马鱼胚胎中进行了具有时空控制的细胞消融。

相似文献

1
Targeted cell ablation in zebrafish using optogenetic transcriptional control.
Development. 2020 Jun 17;147(12):dev183640. doi: 10.1242/dev.183640.
3
Enhanced cell-specific ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase.
Zebrafish. 2014 Apr;11(2):85-97. doi: 10.1089/zeb.2013.0937. Epub 2014 Jan 15.
4
Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies.
Dev Dyn. 2007 Apr;236(4):1025-35. doi: 10.1002/dvdy.21100.
5
Selective Cell Ablation Using an Improved Prodrug-Converting Nitroreductase.
Methods Mol Biol. 2024;2707:223-234. doi: 10.1007/978-1-0716-3401-1_15.
7
TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control.
Development. 2017 Jan 15;144(2):345-355. doi: 10.1242/dev.139238. Epub 2016 Dec 19.
8
A Chemically Inducible Muscle Ablation System for the Zebrafish.
Zebrafish. 2024 Jun;21(3):243-249. doi: 10.1089/zeb.2023.0102. Epub 2024 Mar 4.
9
A zebrafish model of conditional targeted podocyte ablation and regeneration.
Kidney Int. 2013 Jun;83(6):1193-200. doi: 10.1038/ki.2013.6. Epub 2013 Mar 6.
10
TAEL 2.0: An Improved Optogenetic Expression System for Zebrafish.
Zebrafish. 2021 Feb;18(1):20-28. doi: 10.1089/zeb.2020.1951. Epub 2021 Feb 8.

引用本文的文献

1
Effects of age on the response to spinal cord injury: optimizing the larval zebrafish model.
Dev Biol. 2025 Jul 3;526:111-127. doi: 10.1016/j.ydbio.2025.07.003.
2
infection study models and prospectives for probing the microbe-host interface.
J Bacteriol. 2025 Mar 20;207(3):e0040724. doi: 10.1128/jb.00407-24. Epub 2025 Feb 6.
3
Optogenetic Signaling Activation in Zebrafish Embryos.
J Vis Exp. 2023 Oct 27(200). doi: 10.3791/65733.
4
Full-field exposure of larval zebrafish to narrow waveband LED light sources at defined power and energy for optogenetic applications.
J Neurosci Methods. 2024 Jan 1;401:110001. doi: 10.1016/j.jneumeth.2023.110001. Epub 2023 Oct 31.
6
Precise modulation of embryonic development through optogenetics.
Genesis. 2022 Dec;60(10-12):e23505. doi: 10.1002/dvg.23505. Epub 2022 Dec 7.
7
Genetically engineered zebrafish as models of skeletal development and regeneration.
Bone. 2023 Feb;167:116611. doi: 10.1016/j.bone.2022.116611. Epub 2022 Nov 14.
8
The Development and Application of Opto-Chemical Tools in the Zebrafish.
Molecules. 2022 Sep 22;27(19):6231. doi: 10.3390/molecules27196231.
9
Zebrafish: an underutilized tool for discovery in host-microbe interactions.
Trends Immunol. 2022 Jun;43(6):426-437. doi: 10.1016/j.it.2022.03.011. Epub 2022 May 5.
10
Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish.
Front Cell Dev Biol. 2021 Nov 29;9:754606. doi: 10.3389/fcell.2021.754606. eCollection 2021.

本文引用的文献

2
Precision Optogenetic Tool for Selective Single- and Multiple-Cell Ablation in a Live Animal Model System.
Cell Chem Biol. 2017 Jan 19;24(1):110-119. doi: 10.1016/j.chembiol.2016.12.010. Epub 2017 Jan 5.
3
TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control.
Development. 2017 Jan 15;144(2):345-355. doi: 10.1242/dev.139238. Epub 2016 Dec 19.
4
Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish.
Science. 2016 Nov 4;354(6312):630-634. doi: 10.1126/science.aaf2679.
5
Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish.
Development. 2016 May 1;143(9):1464-74. doi: 10.1242/dev.129155. Epub 2016 Mar 10.
7
Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo.
Dev Cell. 2016 Jan 11;36(1):117-126. doi: 10.1016/j.devcel.2015.12.011.
8
KillerOrange, a Genetically Encoded Photosensitizer Activated by Blue and Green Light.
PLoS One. 2015 Dec 17;10(12):e0145287. doi: 10.1371/journal.pone.0145287. eCollection 2015.
9
Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury.
Dev Biol. 2015 Jul 1;403(1):15-21. doi: 10.1016/j.ydbio.2015.03.025. Epub 2015 Apr 14.
10
Optochemical dissection of T-box gene-dependent medial floor plate development.
ACS Chem Biol. 2015 Jun 19;10(6):1466-75. doi: 10.1021/cb5010178. Epub 2015 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验