Sigmundsson Freysteinn, Pinel Virginie, Grapenthin Ronni, Hooper Andrew, Halldórsson Sæmundur A, Einarsson Páll, Ófeigsson Benedikt G, Heimisson Elías R, Jónsdóttir Kristín, Gudmundsson Magnús T, Vogfjörd Kristín, Parks Michelle, Li Siqi, Drouin Vincent, Geirsson Halldór, Dumont Stéphanie, Fridriksdottir Hildur M, Gudmundsson Gunnar B, Wright Tim J, Yamasaki Tadashi
Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, IS-101, Reykjavik, Iceland.
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000, Grenoble, France.
Nat Commun. 2020 May 15;11(1):2403. doi: 10.1038/s41467-020-16054-6.
Large volume effusive eruptions with relatively minor observed precursory signals are at odds with widely used models to interpret volcano deformation. Here we propose a new modelling framework that resolves this discrepancy by accounting for magma buoyancy, viscoelastic crustal properties, and sustained magma channels. At low magma accumulation rates, the stability of deep magma bodies is governed by the magma-host rock density contrast and the magma body thickness. During eruptions, inelastic processes including magma mush erosion and thermal effects, can form a sustained channel that supports magma flow, driven by the pressure difference between the magma body and surface vents. At failure onset, it may be difficult to forecast the final eruption volume; pressure in a magma body may drop well below the lithostatic load, create under-pressure and initiate a caldera collapse, despite only modest precursors.
观测到的前兆信号相对较小的大规模溢流喷发与广泛用于解释火山变形的模型不一致。在此,我们提出了一个新的建模框架,通过考虑岩浆浮力、粘弹性地壳特性和持续的岩浆通道来解决这一差异。在岩浆积累速率较低时,深部岩浆体的稳定性由岩浆与围岩的密度差和岩浆体厚度控制。在喷发过程中,包括岩浆糊状物侵蚀和热效应在内的非弹性过程可以形成一个持续的通道,在岩浆体与地表喷口之间的压力差驱动下支持岩浆流动。在破裂开始时,可能难以预测最终的喷发量;尽管前兆信号较小,但岩浆体中的压力可能会大幅降至岩石静压力以下,产生负压并引发破火山口坍塌。