Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin-Si, Gyeonggi-do, Republic of Korea.
Eur J Radiol. 2020 Jul;128:109031. doi: 10.1016/j.ejrad.2020.109031. Epub 2020 Apr 30.
This study aimed to determine whether MR-based radiomics of glioblastoma can predict the isocitrate dehydrogenase-1 (IDH1) mutation status and compare predictive performances between manual and fully automatic deep-learning segmentations.
Forty-five glioblastoma patients with pretreatment T2-weighted MRIs were retrospectively evaluated. Manual segmentations of glioblastoma and peri-tumoral edema were trained via a deep neural network (V-Net). An independent external cohort of 137 glioblastoma patients from the Cancer Imaging Archive was also included (test set 1, n = 46; test set 2, n = 91). Test set 1-without known IDH1 status-was used to calculate dice similarity coefficients (DSC) between the two segmentation methods (manual & V-Net). From test set 2, all-relevant radiomic features were selected via a random forest-based wrapper algorithm for IDH1 prediction. Receiver operating characteristics (ROC) curves with areas under the curve (AUC) were plotted as performance metrics for both methods.
Among 136 patients (45 and 91 patients from our institution and test set 2, respectively), 17 patients (11.2 %) had IDH1 mutations. The mean DSC of test set 1 was 0.78 ± 0.14 (range, 0.34-0.94). A subset of 9 all-relevant features (8.4 %, 9/107) was selected. V-Net segmentation of the test set 2 yielded similar performance in predicting IDH1 mutation as compared to manual segmentation (V-Net AUC = 0.86 vs. manual AUC = 0.90). The optimal cut-point threshold of AUC yielded 86.8 % accuracy for manual segmentation and 75.8 % for V-Net segmentation.
V-Net showed robust segmentation capability of glioblastoma on T2-weighted MRI. All-relevant radiomics features from both segmentation methods yielded a similar performance in IDH1 prediction.
本研究旨在确定基于磁共振成像的脑胶质瘤放射组学是否可以预测异柠檬酸脱氢酶 1(IDH1)突变状态,并比较手动和全自动深度学习分割之间的预测性能。
回顾性评估了 45 例脑胶质瘤患者的预处理 T2 加权磁共振成像。通过深度神经网络(V-Net)对脑胶质瘤和瘤周水肿进行手动分割。还包括来自癌症成像档案的 137 例脑胶质瘤患者的独立外部队列(测试集 1,n=46;测试集 2,n=91)。没有已知 IDH1 状态的测试集 1 用于计算两种分割方法(手动和 V-Net)之间的骰子相似系数(DSC)。从测试集 2 中,通过基于随机森林的包装算法选择所有相关的放射组学特征用于 IDH1 预测。绘制受试者工作特征(ROC)曲线及其曲线下面积(AUC)作为两种方法的性能指标。
在 136 例患者(分别来自我们机构和测试集 2 的 45 例和 91 例)中,17 例(11.2%)存在 IDH1 突变。测试集 1 的平均 DSC 为 0.78±0.14(范围,0.34-0.94)。选择了一组 9 个相关特征(9/107,8.4%)。与手动分割相比,V-Net 分割测试集 2 预测 IDH1 突变的性能相似(V-Net AUC=0.86 与手动 AUC=0.90)。AUC 的最佳截断阈值产生了手动分割 86.8%的准确率和 V-Net 分割 75.8%的准确率。
V-Net 显示出在 T2 加权磁共振成像上对脑胶质瘤具有强大的分割能力。两种分割方法的所有相关放射组学特征在 IDH1 预测方面表现出相似的性能。