Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China.
HKBU Institute of Research and Continuing Education, 9F, The Industrialization Complex of Shenzhen Virtual University Park, No. 2 Yuexing Third Road, South Zone, Hi-Tech Industrial Park Nanshan District, Shenzhen, Guangdong, 518057, China.
Small. 2020 Jun;16(24):e2001473. doi: 10.1002/smll.202001473. Epub 2020 May 17.
Bulk metals lack chirality. Recently, metals have been sculptured with metastable chirality varying from the micro- to nano-scale. The manipulation of molecular chirality could be novelly performed using metals composed of chiral lattices at atomic scales (i.e., chiral nanoparticles or CNPs) if one could fundamentally understand the interactions between molecules and the chiral metal lattices. The incorporation of chiral ligands has been generally adapted to form metal CNPs. However, post-fabrication removal of chiral ligands usually causes relaxation of the metastable chiral lattices to thermodynamically stable achiral structures, and thus the coexisting chiral ligands will unavoidably disturb or screen the interactions of interest. Herein, a concept of metal CNPs that are free of chiral ligands and consist of atomically chiral lattices is introduced. Without chiral ligands, shear forces applied by substrate rotation along with the translation of incident atoms lead to imposing the metastable chiral lattices onto metals. Metal CNPs show not only the chiroptical effect but the enantiospecific interactions of chiral lattices and molecules. These two unique chiral effects have resulted in the applications of enantiodifferentiation and asymmetric synthesis. Prospectively, the extension in composition space and constituent engineering will apply alloy CNPs to enantiodiscrimination, enantioseperation, bio-imaging, bio-sensing, and asymmetric catalysis.
大块金属缺乏手性。最近,人们通过在微纳尺度上雕刻具有亚稳态手性的金属来实现手性。如果人们能够从根本上理解分子与手性金属晶格之间的相互作用,那么利用由原子尺度上的手性晶格组成的金属(即手性纳米颗粒或 CNPs)来操控分子手性可能会成为一种新颖的方法。通常采用引入手性配体的方法来形成金属 CNPs。然而,手性配体的后处理去除通常会导致亚稳态手性晶格弛豫到热力学稳定的非手性结构,因此共存的手性配体将不可避免地干扰或屏蔽感兴趣的相互作用。在此,引入了一种没有手性配体且由原子手性晶格组成的金属 CNPs 的概念。没有手性配体,基底旋转施加的剪切力以及入射原子的平移会导致将亚稳态手性晶格强加给金属。金属 CNPs 不仅显示出圆二色性效应,还显示出手性晶格和分子的对映选择性相互作用。这两种独特的手性效应已经导致了对映体差异和不对称合成的应用。预计,在组成空间和组成工程方面的扩展将使合金 CNPs 能够用于对映体识别、对映体分离、生物成像、生物传感和不对称催化。