NIH/NIEHS/DIR/BCBB, RTP, NC 27709, USA.
Integrated Laboratory Systems, Inc. RTP, NC 27560, USA.
Nucleic Acids Res. 2020 Jul 2;48(W1):W586-W590. doi: 10.1093/nar/gkaa378.
High-throughput screening (HTS) research programs for drug development or chemical hazard assessment are designed to screen thousands of molecules across hundreds of biological targets or pathways. Most HTS platforms use fluorescence and luminescence technologies, representing more than 70% of the assays in the US Tox21 research consortium. These technologies are subject to interferent signals largely explained by chemicals interacting with light spectrum. This phenomenon results in up to 5-10% of false positive results, depending on the chemical library used. Here, we present the InterPred webserver (version 1.0), a platform to predict such interference chemicals based on the first large-scale chemical screening effort to directly characterize chemical-assay interference, using assays in the Tox21 portfolio specifically designed to measure autofluorescence and luciferase inhibition. InterPred combines 17 quantitative structure activity relationship (QSAR) models built using optimized machine learning techniques and allows users to predict the probability that a new chemical will interfere with different combinations of cellular and technology conditions. InterPred models have been applied to the entire Distributed Structure-Searchable Toxicity (DSSTox) Database (∼800,000 chemicals). The InterPred webserver is available at https://sandbox.ntp.niehs.nih.gov/interferences/.
高通量筛选(HTS)研究计划旨在筛选数千种分子,这些分子涉及数百个生物靶标或途径。大多数 HTS 平台使用荧光和发光技术,占美国 Tox21 研究联盟中测定法的 70%以上。这些技术受到干扰信号的影响,这些干扰信号主要是由与光谱相互作用的化学物质引起的。这种现象会导致高达 5-10%的假阳性结果,具体取决于使用的化学文库。在这里,我们介绍了 InterPred 网络服务器(版本 1.0),这是一个基于首次大规模化学筛选工作的平台,该工作旨在直接表征化学测定干扰,使用专门设计用于测量自发荧光和荧光素酶抑制的 Tox21 产品中的测定法。InterPred 结合了 17 个使用优化机器学习技术构建的定量结构活性关系(QSAR)模型,并允许用户预测一种新化学物质在不同细胞和技术条件组合下干扰的概率。InterPred 模型已应用于整个分布式结构可搜索毒性(DSSTox)数据库(约 80 万种化学物质)。InterPred 网络服务器可在 https://sandbox.ntp.niehs.nih.gov/interferences/ 上获取。