Shi Dexin, Maydeu-Olivares Alberto
University of South Carolina, Columbia, SC, USA.
University of Barcelona, Barcelona, Spain.
Educ Psychol Meas. 2020 Jun;80(3):421-445. doi: 10.1177/0013164419885164. Epub 2019 Nov 10.
We examined the effect of estimation methods, maximum likelihood (ML), unweighted least squares (ULS), and diagonally weighted least squares (DWLS), on three population SEM (structural equation modeling) fit indices: the root mean square error of approximation (RMSEA), the comparative fit index (CFI), and the standardized root mean square residual (SRMR). We considered different types and levels of misspecification in factor analysis models: misspecified dimensionality, omitting cross-loadings, and ignoring residual correlations. Estimation methods had substantial impacts on the RMSEA and CFI so that different cutoff values need to be employed for different estimators. In contrast, SRMR is robust to the method used to estimate the model parameters. The same criterion can be applied at the population level when using the SRMR to evaluate model fit, regardless of the choice of estimation method.
我们研究了估计方法,即最大似然法(ML)、未加权最小二乘法(ULS)和对角加权最小二乘法(DWLS),对三个人口结构方程模型(SEM)拟合指数的影响:近似均方根误差(RMSEA)、比较拟合指数(CFI)和标准化均方根残差(SRMR)。我们考虑了因子分析模型中不同类型和水平的模型误设:维度误设、遗漏交叉负荷以及忽略残差相关性。估计方法对RMSEA和CFI有重大影响,因此不同的估计器需要采用不同的临界值。相比之下,SRMR对用于估计模型参数的方法具有稳健性。在使用SRMR评估模型拟合时,无论估计方法如何选择,在总体水平上都可以应用相同的标准。