Biorobotics Laboratory, School of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea.
Soft Robotics Research Center, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea.
Sensors (Basel). 2020 May 17;20(10):2852. doi: 10.3390/s20102852.
The size of a device and its adaptability to human properties are important factors in developing a wearable device. In wearable robot research, therefore, soft materials and tendon transmissions have been utilized to make robots compact and adaptable to the human body. However, when used for wearable robots, these methods sometimes cause uncertainties that originate from elongation of the soft material or from undefined human properties. In this research, to consider these uncertainties, we propose a data-driven method that identifies both kinematic and stiffness parameters using tension and wire stroke of the actuators. Through kinematic identification, a method is proposed to find the exact joint position as a function of the joint angle. Through stiffness identification, the relationship between the actuation force and the joint angle is obtained using Gaussian Process Regression (GPR). As a result, by applying the proposed method to a specific robot, the research outlined in this paper verifies how the proposed method can be used in wearable robot applications. This work examines a novel wearable robot named Exo-Index, which assists a human's index finger through the use of three actuators. The proposed identification methods enable control of the wearable robot to result in appropriate postures for grasping objects of different shapes and sizes.
设备的尺寸及其对人体特性的适应性是开发可穿戴设备的重要因素。因此,在可穿戴机器人研究中,已经利用了软材料和肌腱传动来使机器人紧凑并适应人体。然而,在可穿戴机器人中使用这些方法时,有时会产生不确定性,这些不确定性源自软材料的伸长或未定义的人体特性。在这项研究中,为了考虑这些不确定性,我们提出了一种数据驱动的方法,该方法使用致动器的张力和线位移来识别运动学和刚度参数。通过运动学识别,提出了一种方法来找到作为关节角度函数的精确关节位置。通过刚度识别,使用高斯过程回归(GPR)获得了驱动力与关节角度之间的关系。结果,通过将所提出的方法应用于特定的机器人,本文概述的研究验证了所提出的方法如何可用于可穿戴机器人应用。这项工作研究了一种名为 Exo-Index 的新型可穿戴机器人,该机器人通过三个致动器辅助人类的食指。所提出的识别方法能够控制可穿戴机器人,从而实现对不同形状和大小物体的适当抓取姿势。