Pan Chun, Cai Bo, Wang Lianming
Department of Mathematics and Statistics, Hunter College, New York, NY, USA.
Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA.
Stat Methods Med Res. 2020 Nov;29(11):3192-3204. doi: 10.1177/0962280220921552. Epub 2020 May 22.
Partly interval-censored time-to-event data often occur in biomedical studies of diseases where periodic medical examinations for symptoms of interest are necessary. Recent decades have seen blooming methods and R packages for interval-censored data; however, the research effort for partly interval-censored data is limited. We propose an efficient and easy-to-implement Bayesian semiparametric method for analyzing partly interval-censored data under the proportional hazards model. Two simulation studies are conducted to compare the performance of the proposed method with two main Bayesian methods currently available in the literature and the classic Cox proportional hazards model. The proposed method is applied to a partly interval-censored progression-free survival data from a metastatic colorectal cancer trial.
部分区间删失的事件发生时间数据经常出现在对疾病进行的生物医学研究中,在这类研究中,对感兴趣的症状进行定期医学检查是必要的。近几十年来,用于区间删失数据的方法和R软件包蓬勃发展;然而,针对部分区间删失数据的研究工作却很有限。我们提出了一种高效且易于实现的贝叶斯半参数方法,用于在比例风险模型下分析部分区间删失数据。进行了两项模拟研究,以比较所提方法与文献中目前可用的两种主要贝叶斯方法以及经典的Cox比例风险模型的性能。所提方法应用于一项转移性结直肠癌试验中的部分区间删失的无进展生存数据。