Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA.
Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA; Center for Medical Image Computing, University College London, United Kingdom; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA.
Neuroimage. 2020 Sep;218:116946. doi: 10.1016/j.neuroimage.2020.116946. Epub 2020 May 20.
The development of automated tools for brain morphometric analysis in infants has lagged significantly behind analogous tools for adults. This gap reflects the greater challenges in this domain due to: 1) a smaller-scaled region of interest, 2) increased motion corruption, 3) regional changes in geometry due to heterochronous growth, and 4) regional variations in contrast properties corresponding to ongoing myelination and other maturation processes. Nevertheless, there is a great need for automated image-processing tools to quantify differences between infant groups and other individuals, because aberrant cortical morphologic measurements (including volume, thickness, surface area, and curvature) have been associated with neuropsychiatric, neurologic, and developmental disorders in children. In this paper we present an automated segmentation and surface extraction pipeline designed to accommodate clinical MRI studies of infant brains in a population 0-2 year-olds. The algorithm relies on a single channel of T1-weighted MR images to achieve automated segmentation of cortical and subcortical brain areas, producing volumes of subcortical structures and surface models of the cerebral cortex. We evaluated the algorithm both qualitatively and quantitatively using manually labeled datasets, relevant comparator software solutions cited in the literature, and expert evaluations. The computational tools and atlases described in this paper will be distributed to the research community as part of the FreeSurfer image analysis package.
婴儿脑形态计量分析的自动化工具的发展明显落后于成人的类似工具。这一差距反映了该领域由于以下原因而面临更大的挑战:1)感兴趣区域的规模较小,2)运动伪影增加,3)由于异时性生长导致的区域几何形状变化,以及 4)与正在进行的髓鞘形成和其他成熟过程相对应的区域对比特性变化。尽管如此,仍然非常需要自动化图像处理工具来量化婴儿组和其他个体之间的差异,因为皮质形态学测量的异常(包括体积、厚度、表面积和曲率)与儿童的神经精神、神经和发育障碍有关。在本文中,我们提出了一种自动化分割和表面提取管道,旨在适应 0-2 岁婴儿大脑的临床 MRI 研究。该算法依赖于单通道 T1 加权磁共振图像,以实现皮质和皮质下脑区的自动分割,生成皮质下结构的体积和大脑皮质的表面模型。我们使用手动标记数据集、文献中引用的相关比较器软件解决方案以及专家评估对算法进行了定性和定量评估。本文中描述的计算工具和图谱将作为 FreeSurfer 图像分析包的一部分分发给研究社区。