Suppr超能文献

核-线粒体通讯涉及 miR-181c,在肥胖症期间的心脏功能障碍中发挥重要作用。

Nuclear-mitochondrial communication involving miR-181c plays an important role in cardiac dysfunction during obesity.

机构信息

Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States of America.

Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States of America.

出版信息

J Mol Cell Cardiol. 2020 Jul;144:87-96. doi: 10.1016/j.yjmcc.2020.05.009. Epub 2020 May 19.

Abstract

AIMS

In cardiomyocytes, there is microRNA (miR) in the mitochondria that originates from the nuclear genome and matures in the cytoplasm before translocating into the mitochondria. Overexpression of one such miR, miR-181c, can lead to heart failure by stimulating reactive oxygen species (ROS) production and increasing mitochondrial calcium level ([Ca]). Mitochondrial calcium uptake 1 protein (MICU1), a regulatory protein in the mitochondrial calcium uniporter complex, plays an important role in regulating [Ca]. Obesity results in miR-181c overexpression and a decrease in MICU1. We hypothesize that lowering miR-181c would protect against obesity-induced cardiac dysfunction.

METHODS AND RESULTS

We used an in vivo mouse model of high-fat diet (HFD) for 18 weeks and induced high lipid load in H9c2 cells with oleate-conjugated bovine serum albumin in vitro. We tested the cardioprotective role of lowering miR-181c by using miR-181c/d mice (in vivo) and AntagomiR against miR-181c (in vitro). HFD significantly upregulated heart levels of miR-181c and led to cardiac hypertrophy in wild-type mice, but not in miR-181c/d mice. HFD also increased ROS production and pyruvate dehydrogenase activity (a surrogate for [Ca]), but the increases were alleviated in miR-181c/d mice. Moreover, miR-181c/d mice fed a HFD had higher levels of MICU1 than did wild-type mice fed a HFD, attenuating the rise in [Ca]. Overexpression of miR-181c in neonatal ventricular cardiomyocytes (NMVM) caused increased ROS production, which oxidized transcription factor Sp1 and led to a loss of Sp1, thereby slowing MICU1 transcription. Hence, miR-181c increases [Ca] through Sp1 oxidation and downregulation of MICU1, suggesting that the cardioprotective effect of miR-181c/d results from inhibition of Sp1 oxidation.

CONCLUSION

This study has identified a unique nuclear-mitochondrial communication mechanism in the heart orchestrated by miR-181c. Obesity-induced overexpression of miR-181c increases [Ca] via downregulation of MICU1 and leads to cardiac injury. A strategy to inhibit miR-181c in cardiomyocytes can preserve cardiac function during obesity by improving mitochondrial function. Altering miR-181c expression may provide a pharmacologic approach to improve cardiomyopathy in individuals with obesity/type 2 diabetes.

摘要

目的

在心肌细胞中,存在源自核基因组并在细胞质中成熟后再转运到线粒体的 microRNA(miR)。一种这样的 miR,miR-181c 的过表达可通过刺激活性氧(ROS)的产生和增加线粒体钙水平 ([Ca]) 导致心力衰竭。线粒体钙摄取 1 蛋白(MICU1)是线粒体钙单向转运体复合物中的调节蛋白,在调节 [Ca] 中发挥重要作用。肥胖导致 miR-181c 过表达和 MICU1 减少。我们假设降低 miR-181c 会防止肥胖引起的心脏功能障碍。

方法和结果

我们使用高脂肪饮食(HFD)喂养 18 周的体内小鼠模型和在体外使用油酸结合牛血清白蛋白诱导 H9c2 细胞中的高脂质负荷。我们通过使用 miR-181c/d 小鼠(体内)和针对 miR-181c 的 AntagomiR(体外)来测试降低 miR-181c 的心脏保护作用。HFD 显著上调心脏 miR-181c 的水平,并导致野生型小鼠的心脏肥大,但 miR-181c/d 小鼠没有。HFD 还增加了 ROS 产生和丙酮酸脱氢酶活性([Ca] 的替代物),但在 miR-181c/d 小鼠中减轻了。此外,喂养 HFD 的 miR-181c/d 小鼠的 MICU1 水平高于喂养 HFD 的野生型小鼠,从而减轻了 [Ca] 的升高。miR-181c 在新生心室心肌细胞(NMVM)中的过表达导致 ROS 产生增加,这导致转录因子 Sp1 氧化,并导致 Sp1 丢失,从而减缓 MICU1 转录。因此,miR-181c 通过 Sp1 氧化和 MICU1 的下调增加 [Ca],表明 miR-181c/d 的心脏保护作用源自 Sp1 氧化的抑制。

结论

本研究在心脏中确定了一种由 miR-181c 协调的独特核-线粒体通讯机制。肥胖诱导的 miR-181c 过表达通过下调 MICU1 增加 [Ca],并导致心脏损伤。抑制心肌细胞中 miR-181c 的策略可以通过改善线粒体功能来维持肥胖期间的心脏功能。改变 miR-181c 的表达可能为改善肥胖/2 型糖尿病个体的心肌病提供一种药理学方法。

相似文献

1
Nuclear-mitochondrial communication involving miR-181c plays an important role in cardiac dysfunction during obesity.
J Mol Cell Cardiol. 2020 Jul;144:87-96. doi: 10.1016/j.yjmcc.2020.05.009. Epub 2020 May 19.
2
3
miR-181c Activates Mitochondrial Calcium Uptake by Regulating MICU1 in the Heart.
J Am Heart Assoc. 2019 Dec 17;8(24):e012919. doi: 10.1161/JAHA.119.012919. Epub 2019 Dec 5.
4
MICU3 Regulates Mitochondrial Calcium and Cardiac Hypertrophy.
Circ Res. 2024 Jun 21;135(1):26-40. doi: 10.1161/CIRCRESAHA.123.324026. Epub 2024 May 15.
5
MICU1 Alleviates Diabetic Cardiomyopathy Through Mitochondrial Ca-Dependent Antioxidant Response.
Diabetes. 2017 Jun;66(6):1586-1600. doi: 10.2337/db16-1237. Epub 2017 Mar 14.
6
Melatonin alleviates angiotensin-II-induced cardiac hypertrophy via activating MICU1 pathway.
Aging (Albany NY). 2020 Nov 26;13(1):493-515. doi: 10.18632/aging.202159.
7
Role of miR-181c in Diet-induced obesity through regulation of lipid synthesis in liver.
PLoS One. 2021 Dec 8;16(12):e0256973. doi: 10.1371/journal.pone.0256973. eCollection 2021.
8
Nuclear miRNA regulates the mitochondrial genome in the heart.
Circ Res. 2012 Jun 8;110(12):1596-603. doi: 10.1161/CIRCRESAHA.112.267732. Epub 2012 Apr 19.
9
MCUB Regulates the Molecular Composition of the Mitochondrial Calcium Uniporter Channel to Limit Mitochondrial Calcium Overload During Stress.
Circulation. 2019 Nov 19;140(21):1720-1733. doi: 10.1161/CIRCULATIONAHA.118.037968. Epub 2019 Sep 19.
10
MICU1 and MICU2 control mitochondrial calcium signaling in the mammalian heart.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2402491121. doi: 10.1073/pnas.2402491121. Epub 2024 Aug 20.

引用本文的文献

1
Obesity and Heart Failure: Mechanistic Insights and the Regulatory Role of MicroRNAs.
Genes (Basel). 2025 May 28;16(6):647. doi: 10.3390/genes16060647.
2
Mitochondrial microRNAs (mitomiRs) as emerging biomarkers and therapeutic targets for chronic human diseases.
Front Genet. 2025 Apr 25;16:1555563. doi: 10.3389/fgene.2025.1555563. eCollection 2025.
3
Role of post-translational modifications of Sp1 in cardiovascular diseases.
Front Cell Dev Biol. 2024 Aug 26;12:1453901. doi: 10.3389/fcell.2024.1453901. eCollection 2024.
4
The Role of the MiR-181 Family in Hepatocellular Carcinoma.
Cells. 2024 Jul 31;13(15):1289. doi: 10.3390/cells13151289.
6
7
MICU3 Regulates Mitochondrial Calcium and Cardiac Hypertrophy.
Circ Res. 2024 Jun 21;135(1):26-40. doi: 10.1161/CIRCRESAHA.123.324026. Epub 2024 May 15.
8
Divergent cardiac and renal effects of miR-181c-5p inhibition in a rodent heart failure model.
Front Cardiovasc Med. 2024 Apr 25;11:1383046. doi: 10.3389/fcvm.2024.1383046. eCollection 2024.
9
MicroRNA-181 in cardiovascular disease: Emerging biomarkers and therapeutic targets.
FASEB J. 2024 May 15;38(9):e23635. doi: 10.1096/fj.202400306R.
10
Mitochondrial quality control in health and cardiovascular diseases.
Front Cell Dev Biol. 2023 Nov 6;11:1290046. doi: 10.3389/fcell.2023.1290046. eCollection 2023.

本文引用的文献

1
miR-181c Activates Mitochondrial Calcium Uptake by Regulating MICU1 in the Heart.
J Am Heart Assoc. 2019 Dec 17;8(24):e012919. doi: 10.1161/JAHA.119.012919. Epub 2019 Dec 5.
2
The secret messages between mitochondria and nucleus in muscle cell biology.
Arch Biochem Biophys. 2019 May 15;666:52-62. doi: 10.1016/j.abb.2019.03.019. Epub 2019 Mar 30.
3
Reversal of Sp1 transactivation and TGFβ1/SMAD1 signaling by HS prevent nickel-induced fibroblast activation.
Toxicol Appl Pharmacol. 2018 Oct 1;356:25-35. doi: 10.1016/j.taap.2018.07.029. Epub 2018 Jul 26.
5
Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity.
JAMA Cardiol. 2018 Apr 1;3(4):280-287. doi: 10.1001/jamacardio.2018.0022.
6
Epigenetic modification of miR-663 controls mitochondria-to-nucleus retrograde signaling and tumor progression.
J Biol Chem. 2017 Dec 15;292(50):20694-20706. doi: 10.1074/jbc.M117.797001. Epub 2017 Oct 24.
7
Intracellular Ca Sensing: Its Role in Calcium Homeostasis and Signaling.
Mol Cell. 2017 Jun 15;66(6):780-788. doi: 10.1016/j.molcel.2017.05.028.
8
MitomiRs Keep the Heart Beating.
Adv Exp Med Biol. 2017;982:431-450. doi: 10.1007/978-3-319-55330-6_23.
9
Mitochondrial miRNAs in diabetes: just the tip of the iceberg.
Can J Physiol Pharmacol. 2017 Oct;95(10):1156-1162. doi: 10.1139/cjpp-2016-0580. Epub 2017 May 3.
10
MICU1 Alleviates Diabetic Cardiomyopathy Through Mitochondrial Ca-Dependent Antioxidant Response.
Diabetes. 2017 Jun;66(6):1586-1600. doi: 10.2337/db16-1237. Epub 2017 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验