González David, García-González Alberto, Chinesta Francisco, Cueto Elías
Aragon Institute of Engineering Research, Universidad de Zaragoza, 50018 Zaragoza, Spain.
Laboratori de Càlcul Numèric, E.T.S. de Ingeniería de Caminos, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain.
Materials (Basel). 2020 May 18;13(10):2319. doi: 10.3390/ma13102319.
We address the problem of machine learning of constitutive laws when large experimental deviations are present. This is particularly important in soft living tissue modeling, for instance, where large patient-dependent data is found. We focus on two aspects that complicate the problem, namely, the presence of an important dispersion in the experimental results and the need for a rigorous compliance to thermodynamic settings. To address these difficulties, we propose to use, respectively, Topological Data Analysis techniques and a regression over the so-called General Equation for the Nonequilibrium Reversible-Irreversible Coupling (GENERIC) formalism (M. Grmela and H. Ch. Oettinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620, 1997). This allows us, on one hand, to unveil the true "shape" of the data and, on the other, to guarantee the fulfillment of basic principles such as the conservation of energy and the production of entropy as a consequence of viscous dissipation. Examples are provided over pseudo-experimental and experimental data that demonstrate the feasibility of the proposed approach.
当存在较大的实验偏差时,我们着手解决本构关系的机器学习问题。这在软生物组织建模中尤为重要,例如,在该领域会存在大量依赖患者的数据。我们关注使该问题变得复杂的两个方面,即实验结果中存在重要的离散性以及需要严格符合热力学设定。为解决这些困难,我们分别提议使用拓扑数据分析技术以及基于所谓的非平衡可逆 - 不可逆耦合通用方程(GENERIC)形式体系(M. 格拉梅拉和H. 奇. 厄廷格,《复杂流体的动力学与热力学。I. 通用形式体系的发展》。《物理评论E》56,6620,1997)进行回归分析。这一方面使我们能够揭示数据的真实“形状”,另一方面保证诸如能量守恒以及由于粘性耗散导致的熵产生等基本原理得以满足。通过伪实验数据和实验数据给出了示例,证明了所提方法的可行性。