Silva Ricardo M L, Merces Leandro, Bof Bufon Carlos C
Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil.
Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), 17033-360 Bauru, São Paulo, Brazil.
ACS Appl Mater Interfaces. 2020 Jul 1;12(26):29556-29565. doi: 10.1021/acsami.0c02067. Epub 2020 Jun 5.
The combination of organic and inorganic materials at the nanoscale to form functional hybrid structures is a powerful strategy to develop novel electronic devices. The knowledge on semiconductor thin-film polarization brings direct benefits to the hybrid organic/inorganic electronics, becoming primordial for the development of devices such as electromechanical logic gates, solar cells, miniaturized valves, organic diodes, and molecular supercapacitors, among others. Here, we report on the dielectric polarization of ultrathin organic semiconducting films-. 5 nm thick metal phthalocyanine ensembles (., CuPc, CoPc, F16CuPc)-employed to build up hybrid metal/oxide/molecule heterojunctions. Such hybrid heterostructures are fully integrated into self-rolled nanomembrane-based capacitors and further investigated by impedance spectroscopy measurements as a function of temperature (from 6 to 300 K). The dielectric polarization of the metal phthalocyanines is found to be thermally activated above a specific threshold temperature, which depends on the molecular structure. Below this threshold, the current leakage across the system is suppressed, thus evidencing intrinsic-like polarization mechanisms. The temperature-independent permittivities of the ultrathin molecular films are found to be strongly dependent on the organic/inorganic hybrid interfaces, while the calculated relaxation times are more likely related to each single-molecule polarization. Beyond the advances in determining the temperature dependence of the permittivity for ultrathin phthalocyanine films integrated within solid-state electronics, our results also support the deterministic design of novel functional devices based on nanoscale hybrid organic/inorganic heterojunctions.
在纳米尺度上结合有机和无机材料以形成功能性混合结构是开发新型电子器件的有力策略。关于半导体薄膜极化的知识给有机/无机混合电子学带来了直接益处,对于诸如机电逻辑门、太阳能电池、微型阀、有机二极管和分子超级电容器等器件的开发至关重要。在此,我们报道了用于构建金属/氧化物/分子混合异质结的5纳米厚金属酞菁系(如CuPc、CoPc、F16CuPc)超薄有机半导体薄膜的介电极化。这种混合异质结构被完全集成到基于自卷纳米膜的电容器中,并通过阻抗谱测量作为温度(从6到300 K)的函数进行进一步研究。发现金属酞菁的介电极化在特定阈值温度以上是热激活的,该阈值温度取决于分子结构。在该阈值以下,系统中的电流泄漏受到抑制,从而证明了类似本征的极化机制。发现超薄分子薄膜与温度无关的介电常数强烈依赖于有机/无机混合界面,而计算出的弛豫时间更可能与每个单分子极化有关。除了在确定固态电子学中集成的超薄酞菁薄膜介电常数的温度依赖性方面取得的进展外,我们的结果还支持基于纳米尺度有机/无机混合异质结的新型功能器件的确定性设计。