Suppr超能文献

基于帕累托的带预处理和惩罚机制的进化算法求解多目标优化问题

Solving Many-Objective Optimization Problems by a Pareto-Based Evolutionary Algorithm With Preprocessing and a Penalty Mechanism.

作者信息

Liu Yuan, Zhu Ningbo, Li Miqing

出版信息

IEEE Trans Cybern. 2021 Nov;51(11):5585-5594. doi: 10.1109/TCYB.2020.2988896. Epub 2021 Nov 9.

Abstract

It is known that the Pareto-based approach is not well suited for optimization problems with a large number of objectives, even though it is a class of mainstream methods in multiobjective optimization. Typically, a Pareto-based algorithm comprises two parts: 1) a Pareto dominance-based criterion and 2) a diversity estimator. The former guides the selection toward the optimal front, while the latter promotes the diversity of the population. However, the Pareto dominance-based criterion becomes ineffective in solving optimization problems with many objectives (e.g., more than 3) and, thus, the diversity estimator will determine the performance of the algorithm. Unfortunately, the diversity estimator usually has a strong bias toward dominance resistance solutions (DRSs), thereby failing to push the population forward. DRSs are solutions that are far away from the Pareto-optimal front but cannot be easily dominated. In this article, we propose a new Pareto-based algorithm to resolve the above issue. First, to eliminate the DRSs, we design an interquartile range method to preprocess the solution set. Second, to balance convergence and diversity, we present a penalty mechanism of alternating operations between selection and penalty. The proposed algorithm is compared with five state-of-the-art algorithms on a number of well-known benchmarks with 3-15 objectives. The experimental results show that the proposed algorithm can perform well on most of the test functions and generally outperforms its competitors.

摘要

众所周知,基于帕累托的方法并不十分适合具有大量目标的优化问题,尽管它是多目标优化中的一类主流方法。通常,基于帕累托的算法包括两个部分:1)基于帕累托支配的准则和2)多样性估计器。前者引导选择朝着最优前沿进行,而后者促进种群的多样性。然而,基于帕累托支配的准则在解决具有多个目标(例如,超过3个)的优化问题时变得无效,因此,多样性估计器将决定算法的性能。不幸的是,多样性估计器通常对抗支配解(DRS)有很强的偏向性,从而无法推动种群前进。DRS是远离帕累托最优前沿但不易被支配的解。在本文中,我们提出一种新的基于帕累托的算法来解决上述问题。首先,为了消除DRS,我们设计了一种四分位距方法对解集进行预处理。其次,为了平衡收敛性和多样性,我们提出了一种在选择和惩罚之间交替操作的惩罚机制。在所提出的算法与五种最先进的算法在一些具有3至15个目标的知名基准上进行了比较。实验结果表明,所提出的算法在大多数测试函数上都能表现良好,并且总体上优于其竞争对手。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验