Suppr超能文献

使用长短期记忆神经网络的下肢运动学轨迹预测

Lower Limb Kinematics Trajectory Prediction Using Long Short-Term Memory Neural Networks.

作者信息

Zaroug Abdelrahman, Lai Daniel T H, Mudie Kurt, Begg Rezaul

机构信息

Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.

College of Engineering and Science, Victoria University, Melbourne, VIC, Australia.

出版信息

Front Bioeng Biotechnol. 2020 May 8;8:362. doi: 10.3389/fbioe.2020.00362. eCollection 2020.

Abstract

This study determined whether the kinematics of lower limb trajectories during walking could be extrapolated using long short-term memory (LSTM) neural networks. It was hypothesised that LSTM auto encoders could reliably forecast multiple time-step trajectories of the lower limb kinematics, specifically linear acceleration (LA) and angular velocity (AV). Using 3D motion capture, lower limb position-time coordinates were sampled (100 Hz) from six male participants (age 22 ± 2 years, height 1.77 ± 0.02 m, body mass 82 ± 4 kg) who walked for 10 min at 5 km/h on a 0% gradient motor-driven treadmill. These data were fed into an LSTM model with a sliding window of four kinematic variables with 25 samples or time steps: LA and AV for thigh and shank. The LSTM was tested to forecast five samples (i.e., time steps) of the four kinematic input variables. To attain generalisation, the model was trained on a dataset of 2,665 strides from five participants and evaluated on a test set of 1 stride from a sixth participant. The LSTM model learned the lower limb kinematic trajectories using the training samples and tested for generalisation across participants. The forecasting horizon suggested higher model reliability in predicting earlier future trajectories. The mean absolute error (MAE) was evaluated on each variable across the single tested stride, and for the five-sample forecast, it obtained 0.047 m/s thigh LA, 0.047 m/s shank LA, 0.028 deg/s thigh AV and 0.024 deg/s shank AV. All predicted trajectories were highly correlated with the measured trajectories, with correlation coefficients greater than 0.98. The motion prediction model may have a wide range of applications, such as mitigating the risk of falls or balance loss and improving the human-machine interface for wearable assistive devices.

摘要

本研究确定了能否使用长短期记忆(LSTM)神经网络来推断步行过程中下肢轨迹的运动学特征。研究假设LSTM自动编码器能够可靠地预测下肢运动学的多个时间步长轨迹,特别是线性加速度(LA)和角速度(AV)。利用三维运动捕捉技术,从六名男性参与者(年龄22±2岁,身高1.77±0.02米,体重82±4千克)中采集了下肢位置-时间坐标(100赫兹),这些参与者在0%坡度的电动跑步机上以5公里/小时的速度行走10分钟。这些数据被输入到一个LSTM模型中,该模型采用了一个包含四个运动学变量、25个样本或时间步长的滑动窗口:大腿和小腿的LA和AV。对LSTM进行测试,以预测四个运动学输入变量的五个样本(即时间步长)。为了实现泛化,该模型在来自五名参与者的2665步数据集上进行训练,并在来自第六名参与者的1步测试集上进行评估。LSTM模型利用训练样本学习下肢运动学轨迹,并对参与者之间的泛化能力进行测试。预测范围表明,在预测早期未来轨迹时模型具有更高的可靠性。在单个测试步长上对每个变量评估平均绝对误差(MAE),对于五个样本的预测,大腿LA为0.047米/秒,小腿LA为0.047米/秒,大腿AV为0.028度/秒,小腿AV为0.024度/秒。所有预测轨迹与测量轨迹高度相关,相关系数大于0.98。该运动预测模型可能有广泛的应用,如降低跌倒或失去平衡的风险,以及改善可穿戴辅助设备的人机界面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468d/7227385/eb2a7e69cb8e/fbioe-08-00362-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验